Page 540 - Modelling in Transport Phenomena A Conceptual Approach
P. 540

520                   APPENDIX A.  MATWEMATXU P.WLIMINARIES

                                                    2
             i       ui           Wi      qui) = - wiF(ui)
                                                  ui + 7
             0    0.00000000  0.56888889    0.28571429    0.16253969
             1  + 0.53846931  0.47862867    0.26530585    0.12698299
             2  - 0.53846931  0.47862867    0.30952418    0.14814715
             3  + 0.90617985  0.23692689    0.25296667    0.05993461
             4  - 0.90617985  0.23692689    0.32820135    0.07775973




            Therefore
                                I = (0.5)(0.57536417) = 0.28768209

            Analytically,
                             I = In (x -I- 2)1:1:  = In


            A.8.4.2  Gauss-Laguerre quadrature


            The GaussLaguerre quadrature can be used to evaluate integrals of  the form

                                                                            (A.8-15)


            where a is arbitrary and finite. The transformation

                                            x=u+a                           (A.8-16)

            reduces Eq.  (A.8-15) to

                                                              n
                 I  = I" e-"f(x) dx = e-a 1" e-"F(u) du = e-a   wiF(u6)     (A.8-17)
                                                             i=O
            where the wi  and ui are given in Table A.4.


            Example A.8  The gamma function, r(n), is defined  by





            where the variable p in the integrand is the dummy variable of integration. Estimate
            r(1.5) by using the  Gauss-Laguem quadrature with n = 3.
   535   536   537   538   539   540   541   542   543   544   545