Page 170 - Modern Analytical Chemistry
P. 170

1400-CH06  9/9/99  7:40 AM  Page 153






                                                                                 Chapter 6 Equilibrium Chemistry  153

                 6F.2 Ladder Diagrams for Complexation Equilibria
                 The same principles used in constructing and interpreting ladder diagrams for
                 acid–base equilibria can be applied to equilibria involving metal–ligand com-
                 plexes. For complexation reactions the ladder diagram’s scale is defined by the
                 concentration of uncomplexed, or free ligand, pL. Using the formation of
                 Cd(NH 3 ) 2+  as an example

                                                              2+
                                     2+
                                   Cd (aq)+NH 3 (aq) t Cd(NH 3 ) (aq)
                 we can easily show that the dividing line between the predominance regions for                Cd 2+
                    2+
                                 2+
                 Cd and Cd(NH 3 ) is log(K 1 ).
                                                                                                 log K  = 2.55
                                                                                                     1
                                                    2 +
                                           [Cd (NH 3 ) ]
                                       K 1 =
                                           [Cd 2 + ][NH 3 ]                                                  Cd(NH ) 2+
                                                                                                                  3
                                                       2 +
                                              [Cd (NH 3 ) ]                                      log K  = 2.01
                                                                                                     2
                                   log( K 1 = log         – log[NH 3 ]
                                        )
                                                 [Cd 2 + ]                                                         2+
                                                                                                                 3 2
                                                                                        p NH 3              Cd(NH )
                                                       2 +
                                              [Cd (NH 3 ) ]
                                        )
                                   log( K 1 = log         +pNH  3                                log K  = 1.34
                                                                                                     3
                                                 [Cd 2 + ]
                                                                                                            Cd(NH )  2+
                                                                                                                 3 3
                                                         [Cd 2 + ]
                                    pNH 3 = log( K 1 +log      2 +                               log K  = 0.84
                                                 )
                                                      [Cd (NH 3 ) ]                                  4
                                                                                                            Cd(NH )  2+
                                                                                                                 3 4
                                                                                        Figure 6.6
                                              2
                 Since K 1 for Cd(NH 3 ) 2+  is 3.55 ´10 , log(K 1 ) is 2.55. Thus, for a pNH 3 greater than  Ladder diagram for metal–ligand complexes
                 2.55 (concentrations of NH 3 less than 2.8 ´10 –3  M), Cd 2+  is the predominate  of Cd 2+  and NH 3 .
                 species. A complete ladder diagram for the metal–ligand complexes of Cd 2+  and
                 NH 3 is shown in Figure 6.6.
                     EXAMPLE 6.8
                     Using the ladder diagram in Figure 6.7, predict the result of adding 0.080 mol
                                                  2–
                     of Ca 2+  to 0.060 mol of Mg(EDTA) . EDTA is an abbreviation for the ligand
                     ethylenediaminetetraacetic acid.
                     SOLUTION
                     The predominance regions for Ca 2+  and Mg(EDTA) 2–  do not overlap,
                     therefore, the reaction
                                                  2–
                                   Ca 2+  + Mg(EDTA) t Mg 2+  + Ca(EDTA) 2–
                                                          2+
                     will take place. Since there is an excess of Ca , the composition of the final
                     solution is approximately
                                     Moles Ca 2+  = 0.080 – 0.060 = 0.020 mol

                                                      2–
                                        Moles Ca(EDTA) = 0.060 mol
   165   166   167   168   169   170   171   172   173   174   175