Page 251 - Modern Control of DC-Based Power Systems
P. 251
Control Approaches for Parallel Source Converter Systems 215
[53] L. Fall, O. Gehan, E. Pigeon, M. Pouliquen, M. M’Saad, Nonlinear state-feedback
with disturbances estimation for DC-DC Buck converter, in: 2012 2nd International
Symposium on Environment Friendly Energies and Applications (EFEA), vol., no.,
pp. 25, 30, 25 27 June 2012.
[54] M.L. McIntyre, M. Schoen, J. Latham, Simplified adaptive backstepping control of
buck DC:DC converter with unknown load, in: 2013 IEEE 14th Workshop on
Control and Modeling for Power Electronics (COMPEL), pp. 1, 7, 23 26 June
2013.
[55] M. Cupelli, M.M. Mirz, A. Monti, Application of Backsteppping to MVDC Ship
Power Systems with Constant Power Loads, in: Electrical Systems for Aircraft,
Railway and Ship Propulsion (ESARS), 2015, pp. 1, 5, 3 5 Mar. 2015.
[56] M. Cupelli, M.M. Mirz, A. Monti, A comparison of backstepping and LQG control
for stabilizing MVDC microgrids with constant power loads, in: 2015 IEEE
Eindhoven PowerTech (POWERTECH), pp. 1, 6, 29 June -2 July 2015.
[57] R.M. Murray, Z. Li, S. Sastry, A Mathematical Introduction to Robotic
Manipulation, CRC Press, Boca Raton, FL, 1994.
[58] Z. Artstein, Stabilization with relaxed controls, Nonlin. Anal. Theory Methods
Appl. 7 (11) (1983) 1163 1173.
[59] E.D. Sontag, A universal construction of Artstein’s theorem on nonlinear stabiliza-
tion, Systems Control Letters 13 (1989) 117 123.
[60] R.A. Freeman, J.A. Primbs, Control Lyapunov functions: New ideas from an old
source, in: Proc. 35th Conference on Decision and Control, pp. 3926 3931, Dec.
1996.
[61] L. Sonneveldt, Adaptive Backstepping Flight Control for Modern Fighter Aircraft,
PhD Dissertation, Technical University Delft, 2010.
[62] O. Ha ¨rkegard, Flight Control Design Using Backstepping, Master Thesis, Linko ¨ping
University, 2001.
[63] J. Zhou, C. Wen, Decentralized backstepping adaptive output tracking of intercon-
nected nonlinear systems, IEEE Trans. Autom. Control 53 (10) (2008) 2378 2384.
[64] M. Krsti´ c, I. Kanellakopoulos, P.V. Kokotovi´ c, Adaptive nonlinear control without
overparametrization, Systems Control Letters 19 (1992) 177 185.
[65] F. Beleznay, M. French, Overparameterised adaptive controllers can reduce nonsin-
gular costs, Systems Control Letters 48 (1) (2003) 12 25.
[66] G. Zames, Feedback and optimal sensitivity: Model reference transformations, multi-
plicative seminorms, and approximate inverses, in: IEEE Transactions on Automatic
Control, vol. 26, no. 2, pp. 301 320, April 1981.
N
[67] B. Francis, G. Zames, On H -optimal sensitivity theory for SISO feedback systems,
in: IEEE Transactions on Automatic Control, vol. 29, no. 1, pp. 9 16, January
1984.
[68] S. Boyd, V. Balakrishnan, P. Kabamba, A bisection method for computing the HN
norm of a transfer matrix and related problems, in: Mathematics of Control, Signals
and Systems, 1989.
[69] J.C. Doyle, K. Glover, P.P. Khargonekar, B.A. Francis, State-space solutions to stan-
dard H2 and HN control problems, in: IEEE Transactions on Automatic Control,
vol. 34, no. 8, pp. 831 847, Aug 1989.
[70] R.A. Hyde, K. Glover, G.T. Shanks, VSTOL first flight on an H N control law,
Comput. Control Eng. J. 6 (1) (1995) 11 16.
[71] H. Mosskull, Optimal DC-link stabilization design, in: IEEE Transactions on
Industrial Electronics, vol. 62, no. 8, pp. 5031 5044, 2015.
[72] S. Skogestad, I. Postlethwaite, Multivariable Feedback Control Analysis and
Design, second edition, Ed. by Wiley, 2005.
[73] J. Doyle, Guaranteed margins for LQG regulators, in: IEEE Transactions on
Automatic Control, vol. 23, no. 4, pp. 756 757, Aug 1978.