Page 251 - Modern Control of DC-Based Power Systems
P. 251

Control Approaches for Parallel Source Converter Systems     215


              [53] L. Fall, O. Gehan, E. Pigeon, M. Pouliquen, M. M’Saad, Nonlinear state-feedback
                 with disturbances estimation for DC-DC Buck converter, in: 2012 2nd International
                 Symposium on Environment Friendly Energies and Applications (EFEA), vol., no.,
                 pp. 25, 30, 25 27 June 2012.
              [54] M.L. McIntyre, M. Schoen, J. Latham, Simplified adaptive backstepping control of
                 buck DC:DC converter with unknown load, in: 2013 IEEE 14th Workshop on
                 Control and Modeling for Power Electronics (COMPEL), pp. 1, 7, 23 26 June
                 2013.
              [55] M. Cupelli, M.M. Mirz, A. Monti, Application of Backsteppping to MVDC Ship
                 Power Systems with Constant Power Loads, in: Electrical Systems for Aircraft,
                 Railway and Ship Propulsion (ESARS), 2015, pp. 1, 5, 3 5 Mar. 2015.
              [56] M. Cupelli, M.M. Mirz, A. Monti, A comparison of backstepping and LQG control
                 for stabilizing MVDC microgrids with constant power loads, in: 2015 IEEE
                 Eindhoven PowerTech (POWERTECH), pp. 1, 6, 29 June -2 July 2015.
              [57] R.M. Murray, Z. Li, S. Sastry, A Mathematical Introduction to Robotic
                 Manipulation, CRC Press, Boca Raton, FL, 1994.
              [58] Z. Artstein, Stabilization with relaxed controls, Nonlin. Anal. Theory Methods
                 Appl. 7 (11) (1983) 1163 1173.
              [59] E.D. Sontag, A universal construction of Artstein’s theorem on nonlinear stabiliza-
                 tion, Systems Control Letters 13 (1989) 117 123.
              [60] R.A. Freeman, J.A. Primbs, Control Lyapunov functions: New ideas from an old
                 source, in: Proc. 35th Conference on Decision and Control, pp. 3926 3931, Dec.
                 1996.
              [61] L. Sonneveldt, Adaptive Backstepping Flight Control for Modern Fighter Aircraft,
                 PhD Dissertation, Technical University Delft, 2010.
              [62] O. Ha ¨rkegard, Flight Control Design Using Backstepping, Master Thesis, Linko ¨ping
                 University, 2001.
              [63] J. Zhou, C. Wen, Decentralized backstepping adaptive output tracking of intercon-
                 nected nonlinear systems, IEEE Trans. Autom. Control 53 (10) (2008) 2378 2384.
              [64] M. Krsti´ c, I. Kanellakopoulos, P.V. Kokotovi´ c, Adaptive nonlinear control without
                 overparametrization, Systems Control Letters 19 (1992) 177 185.
              [65] F. Beleznay, M. French, Overparameterised adaptive controllers can reduce nonsin-
                 gular costs, Systems Control Letters 48 (1) (2003) 12 25.
              [66] G. Zames, Feedback and optimal sensitivity: Model reference transformations, multi-
                 plicative seminorms, and approximate inverses, in: IEEE Transactions on Automatic
                 Control, vol. 26, no. 2, pp. 301 320, April 1981.
                                      N
              [67] B. Francis, G. Zames, On H -optimal sensitivity theory for SISO feedback systems,
                 in: IEEE Transactions on Automatic Control, vol. 29, no. 1, pp. 9 16, January
                 1984.
              [68] S. Boyd, V. Balakrishnan, P. Kabamba, A bisection method for computing the HN
                 norm of a transfer matrix and related problems, in: Mathematics of Control, Signals
                 and Systems, 1989.
              [69] J.C. Doyle, K. Glover, P.P. Khargonekar, B.A. Francis, State-space solutions to stan-
                 dard H2 and HN control problems, in: IEEE Transactions on Automatic Control,
                 vol. 34, no. 8, pp. 831 847, Aug 1989.
              [70] R.A. Hyde, K. Glover, G.T. Shanks, VSTOL first flight on an H N control law,
                 Comput. Control Eng. J. 6 (1) (1995) 11 16.
              [71] H. Mosskull, Optimal DC-link stabilization design, in: IEEE Transactions on
                 Industrial Electronics, vol. 62, no. 8, pp. 5031 5044, 2015.
              [72] S. Skogestad, I. Postlethwaite, Multivariable Feedback Control   Analysis and
                 Design, second edition, Ed. by Wiley, 2005.
              [73] J. Doyle, Guaranteed margins for LQG regulators, in: IEEE Transactions on
                 Automatic Control, vol. 23, no. 4, pp. 756 757, Aug 1978.
   246   247   248   249   250   251   252   253   254   255   256