Page 69 - Modern Optical Engineering The Design of Optical Systems
P. 69

52   Chapter Three

        n′u′   u′   nu   y(n′   n)/R   0.214286   1.0 ( 0.5)/( 10)   0.164286,
        and the image location can be found from l′   y/u′   1/0.164286   6.086961.
        The magnification can be found from an oblique raytrace from the top of a
        1 mm object, or from Eq. 3.15b, m   h′/h   nl′/n′l. Thus m   1.5   ( 6.086961)/
        1.0   7   1.304349  and the image size is 1.304349 mm.
          Tabulating the results for the three thicknesses, we have:
        (a) th   7.0     u′   0.164286    l′   6.08961   h′   1.304349 mm
        (b) th   10.0        0.100000        10.00000        1.500000 mm
        (c)  th   16.66 . . .    0.090000    11.11111        1.000000 mm
        Note that the image size can also be found from Eq. 4.16, m   nu/n′u′.

        2 Given an equiconvex lens, radii   100, thickness   10, and index   1.50,
        trace a ray (parallel to the axis) through the lens, beginning at a ray height of
        (a) 1.0, and (b) 10.0, and determine the axial intersection of the ray.
        ANSWER:
             R          100.     100.
             t              10.
             n      1.0     1.5      1.0
        (a)  y          1.0     0.9666 . . .   l′   y/u′   98.3051
             nu     0.0     0.005   0.0098333 . . .
        (b)  y         10.0     9.666 . . .    l′   y/u′   98.3051
             nu     0.0    0.050    0.098333 . . .

        3  Determine the effective and back focal lengths of the lens in Exercise 2.,
        (a) from the raytrace data, and (b) using the thick lens equations.
        ANSWER:
        (a)     Eq. 3.19  efl   y /u′    1.0/( 0.0098333)   101.6949
                                1  k
             Eq. 3.20   bfl   y /u′   .9666/( 0.0098333)   98.3051
                                K  k
        (b)     Eq. 3.21     (1/f)   (n   1) [c   c   tc c (n   1)/n]
                                            1   2   1 2
                             0.5[0.01   ( 0.01)   10   0.01   ( 0.01)   0.5/1.5]
                             0.5[0.02   0.000333]   0.0098333 . . .
                        efl   101.6949
             Eq. 3.22   bfl   f   ft (n   1)c /n]
                                         1
                             101.6949   101.6949   10   0.5   0.01/1.5
                             101.6949   3.3898
                             98.3051
        4 What is the focal length of the lens in Exercise 3 if it is treated as a thin
        lens?
        ANSWER:  Eq. 3.25    (1/f )   (n   1)[c   c ]
                                          1   2
                            0.5[0.01   ( 0.01)]   0.5   0.02   0.01
                       efl   1/   100.0
   64   65   66   67   68   69   70   71   72   73   74