Page 120 - Modern Spatiotemporal Geostatistics
P. 120

The  Epistemic  Paradigm                   101


        EXAMPLE   4.7:  Consider  the  muInvariable  (vector)  mapping  case  briefly  dis-
        cussed in Comment  4.1 (p. 90).  Assume, for simplicity, that we are dealing with
        two  natural  variables X(p)  and Y(p),  in which  case  the  material  conditional
        has the  form


        Then, if X(p)  physically or logically  implies Y(p),  the connection  "if,  then"  of
        the  material  conditional  could  be considered as causally  or  deductively  valid.
        This  has important  consequences in  pollution  monitoring  and control,  and  in
        environmental  health  studies  involving  cause-effect  analysis  in which \  may
        represent  environmental  exposure  and  V  denotes  the  resulting  health  effect
        map  (see Chapter 9,  "Associations  between environmental exposure and  health
        effect,"  on p.  183).  D
            We  conclude  our  discussion  of  map  conditionals  by  noticing  that  the
        examination  of  spatiotemporal  mapping  in  the  light  of  the  map  conditionals
        introduced  in  these sections deserves  to  be studied  in  more depth  by  modern
        geostatisticians.

        The    BME     Net

        As  the  domain  of  geostatistics  keeps expanding in  search  of  new concepts  and
        applications,  a return  to  the foundations will  be necessary  because each of  the
        two  processes nourishes the  other.  The  epistemic  component  of  BME analysis
        is concerned with  the  acquisition,  modification,  integration,  and processing of
        knowledge  by scientific  reasoning and experience.  Hence, like  most  epistemolo-
        gies,  BME  incorporates  a varying  degree of  commitment  to  both  rationalism
        and  empiricism.  At  the  prior  stage,  e.g.,  BME  emphasizes the  importance
        of  scientific  reasoning,  physical  theories,  and  laws  in  advancing  knowledge.
        By comparison, the  meta-prior  and integration  stages require  good  knowledge
        based  on  evidence  derived  from  observations,  experience,  etc.  Conditional
        probabilities  make explicit  the  changes in the  probabilities  of  maps  in  light  of
        physical  knowledge.  This  makes conditional  probabilities  especially relevant  to
        logic  and to  epistemology  in general.
            The  epistemic  method  offers a  higher  set of  standards for  appraising the
        quality  of  a  mapping  process  based  on  scientific  theories  and  empirical  facts,
        and  for  adjudicating  between  them.  In  short,  the  better  the  underlying  epis-
        temic  method,  the  more  rational  a  mapping  process is  deemed  to  be.  BME
        analysis  leads  us to  study  the  nature  of  the  reasoning frame,  and so  be fore-
        warned of  its  impress on the  physical knowledge to  be processed by the  frame.
         From  a scientific  reasoning point  of  view,  one may argue that  the  aim  of  the
         mapping  paradigm  in  this  chapter  is to  constrain  induction.  This  is the  pur-
         pose of  the  general  knowledge  ^-constraints  on  information  maximization  at
        the  prior  stage,  as well  as the  specificatory  knowledge ,5-constraints on  proba-
         bility maximization  at the  integration  stage.  Constraining can avoid  generating
         innumerable  fruitless  maps  in the  search  for  useful  generalizations.
   115   116   117   118   119   120   121   122   123   124   125