Page 160 - Multifunctional Photocatalytic Materials for Energy
P. 160
146 Multifunctional Photocatalytic Materials for Energy
References
[1] N. Mahmood, et al., Graphene-based nanocomposites for energy storage and conver-
sion in lithium batteries, supercapacitors and fuel cells, J. Mater. Chem. A 2 (1) (2014)
15–32.
[2] M. Finley, BP Statistical Review of World Energy (2013), http://www.bp.com.
[3] S. Solomon, Climate Change 2007-The Physical Science Basis: Working Group I
Contribution to the Fourth Assessment Report of the IPCC, vol. 4, Cambridge University
Press, Cambridge, New York, 2007.
[4] A. Hagfeldt, et al., Dye-sensitized solar cells, Chem. Rev. 110 (11) (2010) 6595–6663.
[5] D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p-n junction photocell for con-
verting solar radiation into electrical power, J. Appl. Phys 25 (1954) 676–677.
[6] R.W. Birkmire, E. Eser, Polycrystalline thin film solar cells: present status and future
potential, Annu. Rev. Mater. Sci. 27 (1) (1997) 625–653.
[7] L. Kazmerski, F. White, G. Morgan, Thin-film CuInSe2/CdS heterojunction solar cells,
Appl. Phys. Lett. 29 (4) (1976) 268–270.
[8] D. Cusano, CdTe solar cells and photovoltaic heterojunctions in II–VI compounds, Solid
State Electron. 6 (3) (1963) 217–232.
[9] M. Grätzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized
solar cells, J. Photochem. Photobiol. A Chem. 164 (1) (2004) 3–14.
[10] S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells,
Chem. Rev. 107 (4) (2007) 1324–1338.
[11] J.M. Ball, et al., Low-temperature processed meso-superstructured to thin-film per-
ovskite solar cells, Energy Environ. Sci. 6 (6) (2013) 1739–1743.
[12] S.I. Na, et al., Efficient and flexible ITO-free organic solar cells using highly conductive
polymer anodes, Adv. Mater. 20 (21) (2008) 4061–4067.
[13] V.-D. Dao, et al., Graphene-based nanohybrid materials as the counter electrode for
highly efficient quantum-dot-sensitized solar cells, Carbon 84 (2015) 383–389.
[14] J. Wu, W. Pisula, K. Müllen, Graphenes as potential material for electronics, Chem. Rev.
107 (3) (2007) 718–747.
[15] X. Wan, Y. Huang, Y. Chen, Focusing on energy and optoelectronic applications: a journey
for graphene and graphene oxide at large scale, Acc. Chem. Res. 45 (4) (2012) 598–607.
[16] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (3) (2007) 183–191.
[17] J. Hass, W. De Heer, E. Conrad, The growth and morphology of epitaxial multilayer
graphene, J. Phys. Condens. Matter 20 (32) (2008) 323202.
[18] J. Zhu, et al., Graphene and graphene-based materials for energy storage applications,
Small 10 (17) (2014) 3480–3498.
[19] X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-
sensitized solar cells, Nano Lett. 8 (1) (2008) 323–327.
[20] J.K. Lee, et al., Silicon nanoparticles–graphene paper composites for Li ion battery
anodes, Chem. Commun. 46 (12) (2010) 2025–2027.
[21] M. Balasubramaniam, S. Balakumar, Tri-solvent mediated probing of ultrasonic energy
towards exfoliation of graphene nanosheets for supercapacitor application, Mater. Lett.
182 (2016) 63–67.
[22] Y. Shao, et al., Graphene based electrochemical sensors and biosensors: a review,
Electroanalysis 22 (10) (2010) 1027–1036.
[23] X. An, et al., WO 3 nanorods/graphene nanocomposites for high-efficiency
visible-light-driven photocatalysis and NO 2 gas sensing, J. Mater. Chem. 22 (17)
(2012) 8525–8531.