Page 163 - Multifunctional Photocatalytic Materials for Energy
P. 163

Graphene-based nanomaterials for solar cells                      149

             [71]  K. Chopra, S. Major, D. Pandya, Transparent conductors—a status review, Thin Solid
                 Films 102 (1) (1983) 1–46.
             [72]  V.C. Tung, et al., Low-temperature solution processing of graphene—carbon nanotube
                 hybrid materials for high-performance transparent conductors, Nano Lett. 9 (5) (2009)
                 1949–1955.
             [73]  H.-W. Tien, et al., The production of graphene nanosheets decorated with silver nanopar-
                 ticles for use in transparent, conductive films, Carbon 49 (5) (2011) 1550–1560.
             [74]  Y. Ahn, et al., Copper nanowire–graphene core–shell nanostructure for highly stable
                 transparent conducting electrodes, ACS Nano 9 (3) (2015) 3125–3133.
             [75]  Y. Altin, et al., Solution-processed transparent conducting electrodes with graphene,
                 silver nanowires and PEDOT: PSS as alternative to ITO, Surf. Coat. Technol. 302 (2016)
                 75–81.
             [76]  H.M.  Upadhyaya, et  al., Recent progress and the status of dye-sensitised solar cell
                 (DSSC) technology with state-of-the-art conversion efficiencies, Sol. Energy Mater. Sol.
                 Cells 119 (2013) 291–295.
             [77]  P.J. Cameron, L.M. Peter, Characterization of titanium dioxide blocking layers in dye-
                 sensitized nanocrystalline solar cells, J. Phys. Chem. B 107 (51) (2003) 14394–14400.
             [78]  S.M. Waita, et al., Electrochemical characterization of TiO 2 blocking layers prepared
                 by reactive DC magnetron sputtering, J. Electroanal. Chem. 637 (1) (2009) 79–83.
             [79]  S.R. Kim, M.K. Parvez, M. Chhowalla, UV-reduction of graphene oxide and its applica-
                 tion as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar
                 cells, Chem. Phys. Lett. 483 (1) (2009) 124–127.
             [80]  G. Cheng, et al., Novel preparation of anatase TiO2@ reduced graphene oxide hybrids
                 for high-performance dye-sensitized solar cells, ACS Appl. Mater. Interfaces 5 (14)
                 (2013) 6635–6642.
             [81]  H. Ding, et al., Reduction of graphene oxide at room temperature with vitamin C for
                 RGO–TiO  2 photoanodes  in  dye-sensitized  solar  cell,  Thin  Solid  Films  584  (2015)
                 29–36.
             [82]  X. Luan, et al., Electrophoretic deposition of reduced graphene oxide nanosheets on
                 TiO 2 nanotube arrays for dye-sensitized solar cells, Electrochim. Acta 111 (2013)
                 216–222.
             [83]  A.A. Madhavan, et al., Electrical and optical properties of electrospun TiO 2-graphene
                 composite nanofibers and its application as DSSC photo-anodes, RSC Adv. 2 (33)
                 (2012) 13032–13037.
             [84]  G.  Zhu, et  al., Enhanced performance of dye-sensitized solar cells by graphene-
                 incorporated nanocrystalline TiO2 films, Nanosci. Nanotechnol. Lett. 5 (2) (2013) 154–158.
             [85]  F. Xu, et al., Graphene scaffolds enhanced photogenerated electron transport in ZnO
                 photoanodes for high-efficiency dye-sensitized solar cells, J. Phys. Chem. C 117 (17)
                 (2013) 8619–8627.
             [86]  L. Kavan, J.H. Yum, M. Grätzel, Optically transparent cathode for dye-sensitized solar
                 cells based on graphene nanoplatelets, ACS Nano 5 (1) (2010) 165–172.
             [87]  Y. Li, et al., Reduced graphene oxide–TaON composite as a high-performance counter
                 electrode for Co (bpy) 33+/2+-mediated dye-sensitized solar cells, ACS Appl. Mater.
                 Interfaces 5 (16) (2013) 8217–8224.
             [88]  Z. Li, et al., NiS2/reduced graphene oxide nanocomposites for efficient dye-sensitized
                 solar cells, J. Phys. Chem. C 117 (13) (2013) 6561–6566.
             [89]  V.-D.  Dao, et  al., Graphene–NiO nanohybrid prepared by dry plasma reduction as
                 a low-cost counter electrode material for dye-sensitized solar cells, Nanoscale 6 (1)
                 (2014) 477–482.
   158   159   160   161   162   163   164   165   166   167   168