Page 166 - Multifunctional Photocatalytic Materials for Energy
P. 166
152 Multifunctional Photocatalytic Materials for Energy
[128] M. Acik, S.B. Darling, Graphene in perovskite solar cells: device design, characteriza-
tion and implementation, J. Mater. Chem. A 4 (17) (2016) 6185–6235.
[129] X. Fang, et al., Graphene quantum dot incorporated perovskite films: passivating grain
boundaries and facilitating electron extraction, Phys. Chem. Chem. Phys. 19 (8) (2017)
6057–6063.
[130] C. Wang, et al., Graphene/SrTiO 3 nanocomposites used as an effective electron-
transporting layer for high-performance perovskite solar cells, RSC Adv. 5 (64) (2015)
52041–52047.
[131] Y. Zhang, et al., Ultrasensitive photodetectors based on island-structured CH3NH3PbI3
thin films, ACS Appl. Mater. Interfaces 7 (39) (2015) 21634–21638.
[132] F. Dell’Olio, M. Palmitessa, C. Ciminelli, Modeling and design of a new flexible
graphene-on-silicon Schottky junction solar cell, Electronics 5 (4) (2016) 73.
[133] M. Mohammed, et al., Junction investigation of graphene/silicon Schottky diodes,
Nanoscale Res. Lett. 7 (1) (2012) 302.
[134] X. Li, et al., Graphene-on-silicon Schottky junction solar cells, Adv. Mater. 22 (25)
(2010) 2743–2748.
[135] X. Miao, et al., High efficiency graphene solar cells by chemical doping, Nano Lett. 12
(6) (2012) 2745–2750.
[136] Y. Ye, et al., High-performance single CdS nanowire (nanobelt) Schottky junction solar
cells with Au/graphene Schottky electrodes, ACS Appl. Mater. Interfaces 2 (12) (2010)
3406–3410.
[137] A. Fairbrother, et al., Development of a selective chemical etch to improve the conver-
sion efficiency of Zn-rich Cu2ZnSnS4 solar cells, J. Am. Chem. Soc. 134 (19) (2012)
8018–8021.