Page 28 - Multifunctional Photocatalytic Materials for Energy
P. 28
Metal oxide powder photocatalysts 17
[11] M.M. Khan, S.A. Ansari, D. Pradhan, D.H. Han, J. Lee, M.H. Cho, Defect-induced band
gap narrowed CeO 2 nanostructures for visible light activities, Ind. Eng. Chem. Res. 53
(2014) 9754–9763.
[12] S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, Band gap engineering of CeO 2
nanostructure by electrochemically active biofilm for visible light applications, RSC Adv.
4 (2014) 16782–16791.
[13] S.A. Ansari, M.M. Khan, M.O. Ansari, M.H. Cho, Nitrogen-doped titanium dioxide
(N-doped TiO 2 ) for visible light photocatalysis, New J. Chem. 40 (2016) 3000–3009.
[14] A. Fujishima, X. Zhang, D.A. Tryk, TiO 2 photocatalysis and related surface phenomena,
Surf. Sci. Rep. 63 (2008) 515–582.
[15] A. Hernandez-Ramırez, I. Medina-Ramırez, Photocatalytic Semiconductors: Synthesis,
Characterization, and Environmental Applications, ISBN 978-3-319-10999-2 (eBook);
DOI https://doi.org/10.1007/978-3-319-10999-2; Springer International Publishing
Switzerland 2015.
3+
[16] R. Saravanan, M.M. Khan, F. Gracia, J. Qin, V.K. Gupta, A. Stephen, Ce -ion-induced
visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO 2 nano-
composite, Sci Rep 6 (2016) 31641.
[17] M.R. Hoffmann, T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of
semiconductor photocatalysis, Chem. Rev. 95 (1) (1995) 69–96.
[18] R.F.P. Nogueira, W.F. Jardim, Fotocatálise heterogênea e sua aplicação ambiental, Quim.
Nova 21 (1) (1998) 69–72.
[19] S.G. Kumar, L.G. Devi, Review on modified TiO 2 photocatalysis under UV/visible light:
selected results and related mechanisms on interfacial charge carrier transfer dynamics,
J. Phys. Chem. A 115 (2011) 13211–13241.
[20] A.R. Khataee, M. Zarei, R. Ordikhani-Seyedlar, Heterogeneous photocatalysis of a dye
solution using supported TiO 2 nanoparticles combined with homogeneous photoelectro-
chemical process: molecular degradation products, J. Mol. Catal. A Chem. 338 (1–2)
(2011) 84–91.
[21] R.L. Ziolli, W.F. Jardim, Mechanism reactions of photodegradation of organic com-
pounds catalyzed by TiO 2 , Quim. Nova 21 (3) (1998) 319–325.
[22] M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in
photocatalytic water-splitting using TiO 2 for hydrogen production, Renew. Sust. Energ.
Rev. 11 (3) (2007) 401–425.
[23] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S. Dunlop,
J.W. Hamilton, J.A. Byrne, K. O'shea, M.H. Entezari, A review on the visible light active
titanium dioxide photocatalysts for environmental applications, Appl. Catal. B Environ.
125 (2012) 331–349.
[24] D. Spasiano, R. Marotta, S. Malato, P. Fernandez-Ibanez, I. Di Somma, Solar photo-
catalysis: materials, reactors, some commercial, and pre-industrialized applications.
A comprehensive approach, Appl. Catal. B Environ. 170 (2015) 90–123.
[25] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J Photochem
Photobiol C: Photochem Rev 1 (1) (2000) 1–21.
[26] A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applica-
tions, Catalysts 3 (1) (2013) 189–218.
[27] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura,
M. Shimohigoshi, T. Watanabe, Light-induced amphiphilic surfaces, Nature 388 (6641)
(1997) 431.
[28] K. Nakata, A. Fujishima, TiO 2 photocatalysis: design and applications, J Photochem
Photobiol C: Photochem Rev 13 (3) (2012) 169–189.