Page 195 - Neural Network Modeling and Identification of Dynamical Systems
P. 195

186           5. SEMIEMPIRICAL NEURAL NETWORK MODELS OF CONTROLLED DYNAMICAL SYSTEMS

                             2
                            ∂ e(˜y(τ m ), ˆ x(τ m ,w),w)                   − e(˘y(τ m ), ˇ x(τ m ,w),w)

                                    ∂ ˆ x                                                  I
                                      2
                                                                           (M + 1)  max  ω   e(˜y(τ m ), ˆ x(τ m ,w),w)

                                                                                           m
                                2                                                 m=0,...,M
                               ∂ e(˘y(τ m ), ˇ x(τ m ,w),w)    min{r 1 ,r 2 }
                            −                         = O( t      ).
                                       ∂ ˇ x 2                             − e(˘y(τ m ), ˇ x(τ m ,w),w)
                                                               (5.32)    = O( t min{r 1 ,r 2 }−1 ).         (5.34)
                            Next, we analyze the errors of estimates for  By the triangle inequality, from (5.33)and(5.34)
                         integrands in equations (5.8), (5.12), and (5.13).  we obtain
                         Considering that all the terms are bounded and       ¯ t

                         that the Frobenius norm is submultiplicative

                         and taking into account (5.28)and (5.32), we get      e(˜y(t), ˆ x(t,w),w)dt

                         the same order of accuracy min{r 1 ,r 2 }.          0

                            Denote the maximum integration step as                 M
                                                                                       I

                          τ =    max (τ m − τ m−1 ). Since the true inte-       −     ω e(˘y(τ m ), ˇ x(τ m ,w),w)
                                                                                       m
                               m=1,...,M                                          m=0
                         grands have r continuous derivatives with re-
                                                                                  ¯ t
                         spect to the variable of integration, and since

                         r 3   r, the estimates of definite integrals given          e(˜y(t), ˆ x(t,w),w)dt

                         by the r 3 th-order numerical integration method        0
                                                                 r 3
                         would have the global error of the form O( τ )            M
                                                                                       I
                         in case the true integrand values were used for        −     ω e(˜y(τ m ), ˆ x(τ m ,w),w)

                                                                                       m
                         the computations. According to the assump-               m=0
                         tion of this theorem, the numerical integration
                                                                                    M

                                                                                        I
                         method linearly depends on the values of the in-       +      ω e(˜y(τ m ), ˆ x(τ m ,w),w)

                                                                                        m
                         tegrand. Denote the weights of this linear com-            m=0
                                     I
                         bination by ω . Thus, we have
                                     m                                             M

                                                                                       I
                                                                                −     ω e(˘y(τ m ), ˇ x(τ m ,w),w)
                             ¯ t                                                       m

                                                                                  m=0

                              e(˜y(t), ˆ x(t,w),w)dt                                 r 3       min{r 1 ,r 2 }−1
                                                                              = O( τ ) + O( t          )

                            0
                                                                                     min{r 1 −1,r 2 −1,r 3 }

                                M                                             = O( t             ).         (5.35)
                                    I                           r 3

                             −    ω e(˜y(τ m ), ˆ x(τ m ,w),w)  = O( τ ),
                                    m
                                                                         Using the same argument for definite inte-
                               m=0
                                                               (5.33)  grals in (5.12)and (5.13), we obtain the final re-
                                                                      sult for individual trajectories, i.e.,
                         and also                                                                 min{r 1 −1,r 2 −1,r 3 }


                                                                                      ˇ
                                                                              E(w) − E(w)  = O( t             ),

                            M

                               I
                              ω e(˜y(τ m ), ˆ x(τ m ,w),w)                 ∂E(w)     ˇ

                               m                                                 −  ∂E(w)         min{r 1 −1,r 2 −1,r 3 } ),
                                                                                           = O( t

                           m=0                                             ∂w        ∂w

                                 M
                                                                          2         2 ˇ
                                     I                                    ∂ E(w)
                              −    ω e(˘y(τ m ), ˇ x(τ m ,w),w)                 −  ∂ E(w)         min{r 1 −1,r 2 −1,r 3 } ).
                                                                                           = O( t
                                     m
                                                                             2         2
                                m=0                                       ∂w        ∂w
                                                                                                            (5.36)
                               M

                                   I
                                  ω   e(˜y(τ m ), ˆ x(τ m ,w),w)
                                   m
                              m=0
   190   191   192   193   194   195   196   197   198   199   200