Page 194 - Neural Network Modeling and Identification of Dynamical Systems
P. 194

5.3 SEMIEMPIRICAL ANN-BASED MODEL DERIVATIVES COMPUTATION      185
                                                              2
                                               2
                                                       2
                                  ∂e    ∂e    ∂ e     ∂ e    ∂ e       By the triangle inequality we obtain
                              e,     ,    ,      ,        ,
                                  ∂w    ∂ ˆ x  ∂w 2  ∂w∂ ˆ x  ∂ ˆ x 2
                          are contained in some compact set.                ˜ y(τ m ) − ˆ g(ˆ x(τ m ,w),w)

                            The model outputs as well as their derivatives
                                                                             − ˘y(τ m ) − ˆ g(ˇ x(τ m ,w),w)
                          depend on the values of model states; hence

                          their estimates are influenced by the global      =     ˜ y(τ m ) −˘y(τ m )
                          truncation error of numerical solutions to cor-    + ˆ g(ˇ x(τ m ,w),w) − ˆ g(ˆ x(τ m ,w),w)


                          responding initial value problems. Since the

                                                                             ˜y(τ m ) −˘y(τ m )
                          vector-valued function ˆ g has r + 2 continuous

                          derivatives, it satisfies the Lipschitz condition   + ˆ g(ˇ x(τ m ,w),w) − ˆ g(ˆ x(τ m ,w),w)
                          along with its two derivatives on the compact         r 2               min{r 1 ,r 2 }
                                                                         = O( t ) + O( t ) = O( t        ), (5.31)
                                                                                         r 1
                          set X.Using (5.28), we obtain

                               ˆ g(ˆ x(τ m ,w),w) − ˆ g(ˇ x(τ m ,w),w)
                                                                       thus, the error estimate has the order of accuracy
                                      r 1
                               = O( t ),                               min{r 1 ,r 2 }.

                               ∂ ˆ g(ˆ x(τ m ,w),w)  ∂ ˆ g(ˇ x(τ m ,w),w)    Using (5.29)and (5.31) and the fact that the
                                             −
                                    ∂w              ∂w                 Frobenius norm is submultiplicative and consid-

                                      r 1
                               = O( t ),                               ering that all these quantities are bounded, we

                               ∂ ˆ g(ˆ x(τ m ,w),w)  ∂ ˆ g(ˇ x(τ m ,w),w)    obtain
                                             −
                                    ∂ ˆ x            ∂ ˇ x

                                      r 1
                               = O( t ),
                                                                         e(˜y(τ m ), ˆ x(τ m ,w),w)
                                2                2
                               ∂ ˆ g i (ˆ x(τ m ,w),w)  ∂ ˆ g i (ˇ x(τ m ,w),w)                       min{r 1 ,r 2 }
                                              −                           − e(˘y(τ m ), ˇ x(τ m ,w),w) = O( t  ),

                                    ∂w                ∂w
                                       2                 2
                                                                         ∂e(˜y(τ m ), ˆ x(τ m ,w),w)
                                      r 1
                               = O( t ), i = 1,...,n x ,
                                                                                 ∂w
                                2                2
                               ∂ ˆ g i (ˆ x(τ m ,w),w)  ∂ ˆ g i (ˇ x(τ m ,w),w)
                                              −                             ∂e(˘y(τ m ), ˇ x(τ m ,w),w)    min{r 1 ,r 2 }
                                    ∂w∂ ˆ x           ∂w∂ ˇ x
                                                                          −                       = O( t      ),
                                                                                    ∂w
                                      r 1
                               = O( t ), i = 1,...,n x ,
                                                                         ∂e(˜y(τ m ), ˆ x(τ m ,w),w)
                                2                2
                               ∂ ˆ g i (ˆ x(τ m ,w),w)  ∂ ˆ g i (ˇ x(τ m ,w),w)       ∂ ˆ x
                                              −
                                     ∂ ˆ x            ∂ ˇ x
                                       2                 2
                                                                            ∂e(˘y(τ m ), ˇ x(τ m ,w),w)    min{r 1 ,r 2 }
                                                                          −                       = O( t      ),
                               = O( t ), i = 1,...,n x .                            ∂ ˇ x
                                      r 1
                                                               (5.29)     2
                                                                         ∂ e(˜y(τ m ), ˆ x(τ m ,w),w)

                                                                                 ∂w 2
                            According to assumptions on the interpola-
                                                                             2
                          tion method for target values of observable out-  ∂ e(˘y(τ m ), ˇ x(τ m ,w),w)    min{r 1 ,r 2 }
                                                                          −                        = O( t      ),
                          puts with respect to the time variable, and due to        ∂w 2
                          the fact that these vector-valued functions have     2
                                                                         ∂ e(˜y(τ m ), ˆ x(τ m ,w),w)
                          r continuous derivatives (r< r 2 ), the interpola-     ∂w∂ ˆ x

                          tion error satisfies                                2
                                                                            ∂ e(˘y(τ m ), ˇ x(τ m ,w),w)    min{r 1 ,r 2 }
                                                                          −                        = O( t      ),
                                                r 2                                 ∂w∂ ˇ x
                               ˜y(t) −˘y(t) = O( t ), t ∈[0, ¯ t].  (5.30)
   189   190   191   192   193   194   195   196   197   198   199