Page 189 - Neural Network Modeling and Identification of Dynamical Systems
P. 189

180           5. SEMIEMPIRICAL NEURAL NETWORK MODELS OF CONTROLLED DYNAMICAL SYSTEMS

                              2
                                                                            ˆ
                             ∂ e(˜y, ˆ x,w)  ∂ ˆ g(ˆ x,w)  T  ∂ ˆ g(ˆ x,w)  ∂f(ˆ x(t,w),u(t),w) ∂ ˆ x(t,w)    T
                                       ≈                   ,             −                           λ(t,w)
                                ∂w 2        ∂w        ∂w                          ∂ ˆ x       ∂w
                              2
                             ∂ e(˜y, ˆ x,w)  ∂ ˆ g(ˆ x,w)  T  ∂ ˆ g(ˆ x,w)  ∂λ(t,w) T     d ˆ x(t,w)
                                                                                              ˆ
                                       ≈                   ,   (5.19)    −                  − f(ˆ x(t,w),u(t),w) dt.
                               ∂w∂ ˆ x      ∂w         ∂ ˆ x                 ∂w        dt
                              2
                             ∂ e(˜y, ˆ x,w)  ∂ ˆ g(ˆ x,w)  T  ∂ ˆ g(ˆ x,w)                                  (5.21)
                                       ≈                   .
                                ∂ ˆ x 2     ∂ ˆ x      ∂ ˆ x
                                                                      Integrating by parts, we obtain
                            Now, we describe a continuous time coun-
                         terpart of a backward-in-time BPTT algorithm.
                                                                           ¯ t
                         This method is based on the application of ad-      d ∂ ˆ x(t,w) T
                         joint sensitivity analysis [22–24]. First, we treat  dt  ∂w   λ(t,w)dt
                         the set of ODEs that describe the semiempiri-    0
                         cal model dynamics (5.2)asasetofconstraints.         ∂ ˆ x(¯ t,w)  T  ∂ ˆ x(0,w) T
                         Next, we include them into the original indi-      =   ∂w    λ(¯ t,w) −  ∂w   λ(0,w)
                         vidual trajectory error function along with the
                                                                                 ¯ t
                                                                                         T
                         Lagrange multipliers λ to obtain the following            ∂ ˆ x(t,w) dλ(t,w)
                         Lagrange function:                                   −     ∂w       dt   dt.       (5.22)
                                                                                0
                                  ¯ t

                          L(w) =   e(˜y(t), ˆ x(t,w),w)               If we substitute (5.22)into(5.21) and exclude


                                                                      the term  d ˆ x(t,w)  − f(ˆ x(t,w),u(t),w) ,whichis
                                                                                        ˆ
                                 0                                                dt

                                       d ˆ x(t,w)                     identically zero, we get
                                    T
                                                ˆ
                            − λ(t,w)          − f(ˆ x(t,w),u(t),w) dt.
                                         dt
                                                               (5.20)              ¯ t
                                                                       ∂L(w)      ∂e(˜y(t), ˆ x(t,w),w)
                                                                              =
                         Note that since the state variable predictions ˆ x  ∂w          ∂w
                                                                                0
                         are in fact computed by solving the initial value
                                                                                                T
                         problem for the ODE system (5.2), these newly          ∂f(ˆ x(t,w),u(t),w)
                                                                                 ˆ
                         imposed constraints are satisfied on the whole        +       ∂w         λ(t,w)
                         time segment, and the second term of (5.20)is          ∂ ˆ x(t,w) T    dλ(t,w)
                         identically zero. Hence, the gradient and Hes-       +   ∂w
                         sian of the individual trajectory error function                   dt
                                                                                                T
                         are identical to the gradient and Hessian of the       ∂f(ˆ x(t,w),u(t),w)
                                                                                 ˆ
                         Lagrange function. The Lagrange function gra-        +        ∂ ˆ x     λ(t,w)
                         dient equals                                           ∂e(˜y(t), ˆ x(t,w),w)
                                                                              +                  dt
                                                                                       ∂ ˆ x
                                   ¯ t

                          ∂L(w)     ∂e(˜y(t), ˆ x(t,w),w)                       ∂ ˆ x(0,w) T     ∂ ˆ x(¯ t,w) T
                                =
                           ∂w              ∂w                                 +   ∂w    λ(0,w) −   ∂w    λ(¯ t,w).
                                  0
                                                                                                            (5.23)
                                     T
                              ∂ ˆ x(t,w) ∂e(˜y(t), ˆ x(t,w),w)
                            +
                                ∂w            ∂ ˆ x                   Again, since the artificial constraints are satis-

                                            ˆ
                               d ∂ ˆ x(t,w)  ∂f(ˆ x(t,w),u(t),w)      fied on the whole time segment, the Lagrange
                            −            −
                               dt  ∂w             ∂w                  multipliers are completely arbitrary. In order to
   184   185   186   187   188   189   190   191   192   193   194