Page 188 - Neural Network Modeling and Identification of Dynamical Systems
P. 188

5.3 SEMIEMPIRICAL ANN-BASED MODEL DERIVATIVES COMPUTATION      179
                            2
                           ∂ e(˜y, ˆ x,w)  ∂ ˆ g(ˆ x,w) T  ∂ ˆ g(ˆ x,w)  Similarly, the second-order sensitivities are rep-
                                      =
                              ∂w 2        ∂w         ∂w                resented by the solution of the following initial
                                        n y  2                         value problem for i = 1,...,n x :
                                           ∂ ˆ g i (ˆ x,w)
                                      −             ω i ˜y i − ˆ g i (ˆ x,w) ,
                                             ∂w 2
                                                                         2
                                        i=1                             ∂ ˆ x i (0,w)
                            2
                           ∂ e(˜y, ˆ x,w)  ∂ ˆ g(ˆ x,w) T  ∂ ˆ g(ˆ x,w)    ∂w 2  = 0,
                                      =
                              ∂w∂ ˆ x     ∂w         ∂ ˆ x                 2
                                                                        d ∂ ˆ x i (t,w)
                                        n y  2
                                           ∂ ˆ g i (ˆ x,w)              dt   ∂w 2
                                      −             ω i ˜y i − ˆ g i (ˆ x,w) ,
                                             ∂w∂ ˆ x
                                                                             2ˆ
                                        i=1                                 ∂ f i (ˆ x(t,w),u(t),w)
                            2
                           ∂ e(˜y, ˆ x,w)  ∂ ˆ g(ˆ x,w) T  ∂ ˆ g(ˆ x,w)   =        ∂w 2
                                      =
                              ∂ ˆ x 2     ∂ ˆ x      ∂ ˆ x                     2ˆ
                                                                              ∂ f i (ˆ x(t,w),u(t),w) ∂ ˆ x(t,w)
                                        n y  2                              +
                                           ∂ ˆ g i (ˆ x,w)                           ∂w∂ ˆ x      ∂w

                                      −             ω i ˜y i − ˆ g i (ˆ x,w) .
                                              ∂ ˆ x 2
                                                                                     T
                                                                                        2ˆ
                                        i=1                                   ∂ ˆ x(t,w) ∂ f i (ˆ x(t,w),u(t),w)
                                                               (5.15)       +
                                                                                ∂w           ∂ ˆ x∂w
                                                                                     T  2ˆ
                          Recall that according to Schwarz’s theorem on       ∂ ˆ x(t,w) ∂ f i (ˆ x(t,w),u(t),w) ∂ ˆ x(t,w)
                                                                            +
                          equality of mixed partials,                           ∂w            ∂ ˆ x 2      ∂w
                                                                               n x
                                                                                 ∂f i (ˆ x(t,w),u(t),w) ∂ ˆ x j (t,w)
                                                                                ˆ                   2
                                                          T
                                    2
                                                 2
                                   ∂ e(˜y, ˆ x,w)  ∂ e(˜y, ˆ x,w)           +                               .
                                             =             .                            ∂ ˆ x j      ∂w 2
                                     ∂ ˆ x∂w      ∂w∂ ˆ x                     j=1
                                                                                                            (5.17)
                            Also, the individual trajectory error function
                          gradient (5.12) depends on first-order sensitivi-
                                                                         A computationally cheaper Gauss–Newton
                          ties  ∂ ˆ x(t,w) , and the Hessian (5.13) additionally  Hessian approximation may be obtained by
                               ∂w
                          depends on second-order sensitivities        discarding the second-order terms in (5.13),
                                                                       i.e.,
                                           2      
 n x
                                         ∂ ˆ x i (t,w)
                                                      .
                                           ∂w 2    i=1                  2          ¯ t  2
                                                                       ∂ E(w)      ∂ e(˜y(t), ˆ x(t,w),w)
                                                                              ≈
                            Differentiating the initial value problem for  ∂w 2          ∂w 2
                                                                                0
                          the semiempirical model (5.2) with respect to pa-
                                                                              2
                          rameters w yields the initial value problem for    ∂ e(˜y(t), ˆ x(t,w),w) ∂ ˆ x(t,w)
                                                                           +
                          the first-order sensitivities, i.e.,                      ∂w∂ ˆ x       ∂w
                                                                                    T  2
                              ∂ ˆ x(0,w)                                     ∂ ˆ x(t,w) ∂ e(˜y(t), ˆ x(t,w),w)
                                      = 0,                                 +
                                ∂w                                             ∂w           ∂ ˆ x∂w
                                                                                    T
                                                                                       2
                                         ˆ
                            d ∂ ˆ x(t,w)  ∂f(ˆ x(t,w),u(t),w)                ∂ ˆ x(t,w) ∂ e(˜y(t), ˆ x(t,w),w) ∂ ˆ x(t,w)
                                      =                                    +                                   dt,
                            dt  ∂w             ∂w                              ∂w            ∂ ˆ x 2     ∂w
                                           ˆ
                                          ∂f(ˆ x(t,w),u(t),w) ∂ ˆ x(t,w)                                    (5.18)
                                        +                         .
                                                 ∂ ˆ x       ∂w
                                                               (5.16)  as well as in (5.15), i.e.,
   183   184   185   186   187   188   189   190   191   192   193