Page 229 - Neural Network Modeling and Identification of Dynamical Systems
P. 229

220                6. NEURAL NETWORK SEMIEMPIRICAL MODELING OF AIRCRAFT MOTION


                         Algorithm 1 Generation of the test maneuvers.
                         Require: set of the admissible values for the state variables X ⊂ R n x  and the control variables U ⊂
                             R ;
                              n u
                         Require: maximum number of maneuvers P, admissible maneuver duration limits [K min ,K max ];
                         Require: maximum number of candidate trajectory segments Q, minimum admissible quality of
                             a candidate trajectory segment d min , admissible candidate trajectory segment duration limits
                             [S min ,S max ] and number of trials R;
                         Require: dynamical system model right hand side f: X × U → R ;
                                                                                   n x
                         Require: metric ρ for comparison of sets of vectors;

                         Ensure: set of the test maneuvers M that contains pairs x 0 ,{u k } K  , where x 0 ∈ X is an initial state,
                                                                                 k=1
                             u k ∈ U is a sequence of controls;
                         Ensure: set of the function f argument values A for the selected trajectories, which contains vectors
                             a ∈ R n x +n u ;
                           1: M ← ∅;
                           2: A ← ∅;
                           3: p ← 1;
                           4: while p   P and S max >S min do
                           5:   r ← 1;
                           6:   while r< R do
                                   ¯
                           7:      A ← A;
                                    p
                           8:      x ∼ U(X);
                                    0
                                    p
                           9:      K ← 0;
                                          p
                          10:      while K <K max do
                                                           p
                          11:         S ← min{S max ,K max − K };
                                                                                       p
                                                                                
  p,q K +S−1

                          12:         Generate a set of candidate maneuver segments u       , q = 1,...,Q within U,
                                                                                   k  k=K  p
                             for example, a sequence of steps with uniformly distributed amplitudes and frequencies;
                          13:         Numerically solve the corresponding initial value problems using the dynamical sys-
                                                                                p

                                                                          
  p,q K +S
                             tem model to obtain candidate trajectory segments x k  k=K p , q = 1,...,Q;
                                                           p
                                             
  p,q  p,q T    K +S−1
                          14:         A ˜ p,q  ← (x  ,u  )      , q = 1,...,Q;
                                               k    k    k=K  p
                          15:         Evaluate   fitness   of   each   candidate   maneuver     segment   d p,q  =
                             ⎧                                   p,q
                                                         p
                                                  p
                             ⎪ 0,         if ∃k ∈[K + 1,K + S]: x   / ∈ X,
                             ⎪                                   k
                             ⎨
                              0,          if maximum eigenvalue of the cov A ˜ p,q  is too small, q = 1,...,Q;
                             ⎪
                             ⎪
                             ⎩   ¯ ˜ p,q
                              ρ(A,A    ),  otherwise,
                                                                                                             ∗
                                                                                ∗
                          16:         Find the best candidate maneuver segment q ← argmaxd   p,q  with fitness d ←
                                                                                       q
                             maxd p,q ;
                              q
                                         ∗
                          17:         if d >d min then
                                          p    p,q  ∗    p      p
                          18:            u ← u    , k = K ,...,K + S − 1;
                                          k    k
                                          p    p,q  ∗   p          p
                          19:            x ← x    , k = K + 1,...,K + S;
                                          k    k
                                         ¯
                                              ¯
                          20:            A ← A ∪ A ˜ p,q  ∗ ;
                                                p
                                          p
                          21:            K ← K + S;
   224   225   226   227   228   229   230   231   232   233   234