Page 235 - Neural Network Modeling and Identification of Dynamical Systems
P. 235

226                6. NEURAL NETWORK SEMIEMPIRICAL MODELING OF AIRCRAFT MOTION

                         [16] Roskam J. Airplane flight dynamics and automatic  [29] Wang KC, Iliff KW. Application of system identification
                             flight control. Part II. Lawrence, KS: DAR Corporation;  to aircraft at NASA Langley Research Center. J Aircr
                             1998.                                        2004;41(4):752–64.
                         [17] Cook MV. Flight dynamics principles. Amsterdam: El-  [30] Dietterich TG. Machine-learning research: Four current
                             sevier; 2007.                                directions. AI Mag 1997;18(7):97–136.
                         [18] Hull DG. Fundamentals of airplane flight mechanics.  [31] Joshi P, Kulkarni P. Incremental learning: Areas and
                             Berlin: Springer; 2007.
                         [19] Stevens BL, Lewis FL, Johnson E. Aircraft control and  methods — a survey, vol. 2. Int J Data Min Knowl
                             simulation: Dynamics, control design, and autonomous  Manag Process 2012;2(5):43–51.
                             systems. 3rd ed. Hoboken, New Jersey: John Wiley &  [32] Niewald PW, Parker SL. Flight-test techniques em-
                             Sons, Inc.; 2016.                            ployed to successfully verify F/A-18E in-flight lift and
                         [20] Nguyen LT, Ogburn ME, Gilbert WP, Kibler KS,  drag. J Aircr 2000;37(2):194–200.
                             Brown PW, Deal PL. Simulator study of stall/post-stall  [33] Mulder JA, van Sliedregt JM. Estimation of drag and
                             characteristics of a fighter airplane with relaxed longi-  thrust of jet-propelled aircraft by non-steady flight-test
                             tudinal static stability. NASA TP-1538; Dec. 1979.  maneuvers. Delft Univ. of Technology, Memorandum
                         [21] Sonneveld L. Nonlinear F-16 model description. The  M-255, Dec. 1976.
                             Netherlands: Control & Simulation Division, Delft Uni-  [34] Cybenko G. Approximation by superposition of
                             versity of Technology; June 2006.            a sigmoidal function. Math Control Signals Syst
                         [22] Haykin S. Neural networks: A comprehensive founda-
                                                                          1989;2(4):303–14.
                             tion. 2nd ed. Upper Saddle River, NJ, USA: Prentice  [35] Hornik K, Stinchcombe M, White H. Multilayer feed-
                             Hall; 1998.
                         [23] Hamel PG, Jategaonkar RV. Evolution of flight vehicle  forward networks are universal approximators. Neural
                             system identification. J Aircr 1996;33(1):9–28.  Netw 1989;2(5):359–66.
                         [24] Hamel PG, Kaletka J. Advances in rotorcraft system  [36] Gorban AN. Generalized approximation theorem and
                             identification. Prog Aerosp Sci 1997;33(3–4):259–84.  computational capabilities of neural networks. Sib J Nu-
                         [25] Jategaonkar RV, Fischenberg D, von Gruenhagen W.  mer Math 1998;1(1):11–24 (in Russian).
                             Aerodynamic modeling and system identification from  [37] Muja M, Lowe DG. Scalable nearest neighbor algo-
                             flight data — recent applications at DLR. J Aircr  rithms for high dimensional data. IEEE Trans Pattern
                             2004;41(4):681–91.                           Anal Mach Intell 2014;36(11):2227–40.
                         [26] Klein V. Estimation of aircraft aerodynamic parameters  [38] Egorchev MV, Tiumentsev YV. Neural network based
                             from flight data. Prog Aerosp Sci 1989;26(1):1–77.  semi-empirical approach to the modeling of longitudi-
                         [27] Iliff KW. Parameter estimation for flight vehicles. J Guid  nal motion and identification of aerodynamic character-
                             Control Dyn 1989;12(5):609–22.
                         [28] Morelli EA, Klein V. Application of system identifica-  istics for maneuverable aircraft. Tr MAI 2017;(94):1–16
                             tion to aircraft at NASA Langley Research Center. J  (in Russian).
                             Aircr 2005;42(1):12–25.
   230   231   232   233   234   235   236   237   238   239   240