Page 141 - New Trends in Eco efficient and Recycled Concrete
P. 141
Waste rubber aggregates 115
Bravo, M., de Brito, J., 2012. Concrete made with used tyre aggregate: durability-related per-
formance. J. Clean. Prod. 25, 42 50.
Chen, S.H., Wang, H.Y., Jhou, J.W., 2013. Investigating the properties of lightweight con-
crete containing high dosages of recycled green building materials. Constr. Build.
Mater. 48, 98 103.
Chung, K.H., Hong, Y.K., 1999. Introductory behavior of rubber concrete. J. Appl. Polym.
Sci. 72, 35 40.
Chunlin, L., Kunpeng, Z., Depeng, C., 2011. Possibility of concrete prepared with steel slag
as fine and coarse aggregates: a preliminary study. Proc. Eng 24, 412 416.
Colom, X., Carrillo, F., Canavate, J., 2007. Composites reinforced with reused tyres: surface
oxidant treatment to improve the interfacial compatibility. Compos. A: Appl. Sci.
Manuf. 38 (1), 44 50.
Corinaldesi, V., Mazzoli, A., Moriconi, G., 2011. Mechanical behaviour and thermal conduc-
tivity of mortars containing waste rubber particles. Mater. Des. 32, 1646 1650.
Correia, S.L., Partala, T., Loch, R.C., Segada ˜es, A.M., 2010. Factorial design used to model
the compressive strength of mortars containing recycled rubber. Compos. Struct. 92,
2047 2051.
Del Rio Merino, M., Astorqui, J.S.C., Cortina, M.G., 2007. Viability analysis and construc-
tive applications of lightened mortar (rubber cement mortar). Constr. Build. Mater. 21,
1785 1791.
ETRMA, 2011. End of Life Tyres: A Valuable Resource with Growing Potential. European
Tyre and Rubber Manufacturers Association, Brussels, Belgium, p. 2011.
Eiras, J.N., Segovia, F., Borrachero, M.V., Monzo `, J., Bonilla, M., Paya ´, J., 2014. Physical
and mechanical properties of foamed Portland cement composite containing crumb rub-
ber from worn tires. Mater. Des. 59, 550 557.
El-Gammal, A., Abdel-Gawas, A.K., El-Sherbini, Y., Shalaby, A., 2010. Compressive
strength of concrete utilizing waste tire rubber. J. Eng. Trends Eng. Appl. Sci. 1 (1),
96 99.
Eldin, N.N., Senouci, A.B., 1993. Rubber tire particles as concrete aggregate. J. Mater. Civ.
Eng. ASCE 5, 478 496.
Fadiel, A., Al Rifaie, F., Taher, A.L., Fini, E., 2014. Use of crumb rubber to improve thermal
efficiency of cement-based materials. Am. J. Eng. Appl. Sci. 7 (1), 1 11.
Ganesan, N., Raj, B., Shashikala, A.P., 2012. Strength and durability of self compacting rub-
berized concrete. Indian Concr. J. 15 24.
Ganesan, N., Bharati Raj, J., Shashikala, A.P., 2013a. Flexural fatigue behavior of self com-
pacting rubberized concrete. Constr. Build. Mater. 44, 7 14.
Ganesan, N., Raj, B., Shashikala, A.P., 2013b. Behavior of self-consolidating rubberized con-
crete beam-column joints. ACI Mater. J. 110 (6), 697 704.
Geso˘ glu, M., G¯ uneyisi, E., 2007. Strength development and chloride penetration in rubber-
ized concretes with and without silica fume. Mater. Struct. 40, 953 964.
Geso˘ glu, M., G¯ uneyisi, E., 2011. Permeability of self-compacting rubberized concrete.
Constr. Build. Mater. 25, 3319 3326.
Geso˘ glu, M., G¯ uneyisi, E., Khoshnaw, G., Ipek, S., 2014. Investigating properties of pervious
concretes containing waste tire rubbers. Constr. Build. Mater. 63, 206 213.
Gisbert, A.N., Gadea Borrell, J.M., Parres Garcı ´a, F., Julia ´ Sanchis, E., Amoro `s, C., Segura
Alcaraz, J., et al., 2014. Analysis behaviour of static and dynamic properties of
Ethylene Propylene Diene Methylene crumb rubber mortar. Constr. Build. Mater.
50, 671 682.