Page 144 - New Trends in Eco efficient and Recycled Concrete
P. 144
118 New Trends in Eco-efficient and Recycled Concrete
Rafique, R.M.U., 2012. Life cycle assessment of waste car tyres at Scandinavian Enviro sys-
tems. Master of Science Thesis in Chemical and Biological Engineering, Chalmers
University of Technology, Gothenburg, Sweden, December, 47.
Raj, B., Ganesan, N., Shashikala, A.P., 2011. Engineering properties of self-compacting rub-
berized concrete. J. Reinf. Plast. Compos. 30 (23), 1923 1930.
Sallam, H.E.M., Sherbibi, A.S., Seleem, M.H., Balaha, M.M., 2008. Impact resistance of rub-
berized concrete. Eng. Res. J. 31 (3), 265 271.
Segre, N., Joekes, I., Galves, A.D., Rodrigues, J.A., 2004. Rubber-mortar composites: effect
of composition on properties. J. Mater. Sci. 39, 3319 3327.
Shu, X., Huang, B., 2014. Recycling of waste tire rubber in asphalt and Portland cement con-
crete: an overview. Constr. Build. Mater. 67, 217 224.
Siddique, R., Naik, T.R., 2004. Properties of concrete containing scrap-tire rubber an over-
view. Waste Manage. 24, 563 569.
Sienkiewicz, M., Janik, H., Borzedowska-Labuda, K., Kucinska-Lipka, J., 2017.
Environmentally friendly polymer-rubber composites obtained from waste tyres: A
review. J Clean. Prod. 147, 560 571.
ˇ
Skripkiunas, G., Grinys, A., Cernius, B., 2007. Deformation properties of concrete with rub-
ber waste additives. Mater. Sci. 13 (3), 219 223.
Sukontasukkul, P., 2009. Use of crumb rubber to improve thermal and sound properties of
pre-cast concrete panel. Constr. Build. Mater. 23, 1084 1092.
Sukontasukkul, P., Chaikaew, C., 2006. Properties of concrete pedestrian block mixed with
crumb rubber. Constr. Build. Mater. 20, 450 457.
Sukontasukkul, P., Tiamlom, K., 2012. Expansion under water and drying shrinkage of rub-
berized concrete mixed with crumb rubber with different size. Constr. Build. Mater. 29,
520 526.
Sukontasukkul, P., Jamanam, S., Sappakittipakorn, M., Banthia, N., 2013. Preliminary study
on bullet resistance of double-layer concrete panel made of rubberized and steel fiber
reinforced concrete. Mater. Struct. 47 (1-2), 117 125.
Taha, M.M., El-Dieb, A.S., AbdEl-Wahab, M.A., Abdel-Hameed, M.E., 2008. Mechanical,
fracture, and microstructural investigations of rubber concrete. J. Mater. Civ. Eng.
ASCE 640 649.
Thomas, B.S., Gupta, R.C., Kalla, P., Cseteneyi, L., 2014. Strength, abrasion and permeation
characteristics of cement concrete containing discarded rubber fine aggregates. Constr.
Build. Mater. 59, 205 212.
Topcu, I.B., 1995. The properties of rubberized concretes. Cem. Concr. Res. 25 (2),
¸
304 310.
¸
Topcu, I.B., Demir, A., 2007. Durability of rubberized mortar and concrete. J. Mater. Civ.
Eng. ASCE 173 178.
Topcu, I.B., Sarıdemir, M., 2008. Prediction of rubberized concrete properties using artificial
¸
neural network and fuzzy logic. Constr. Build. Mater. 22, 532 540.
Turatsinze, A., Bonnet, S., Granju, J.L., 2005. Mechanical characterization of cement-based
mortar incorporating rubber aggregates from recycled worn tyres. Build. Environ. 40,
221 226.
Turatsinze, A., Granju, J.L., Bonnet, S., 2006. Positive synergy between steel-fibers and rub-
ber aggregates: effect on the resistance of cement based mortars to shrinkage cracking.
Cem. Concr. Res. 36, 1692 1697.
Turatsinze, A., Bonnet, S., Granju, J.L., 2007. Potential of rubber aggregates to modify prop-
erties of cement based-mortars: improvement in cracking shrinkage resistance. Constr.
Build. Mater. 21, 176 181.