Page 135 - Numerical Analysis Using MATLAB and Excel
P. 135

Minors and Cofactors



               if n==2
                   y=det2x2(A);
                   return
               end
               %
               if n==3
                   y=det3x3(A);
                   return
               end
               % For 4x4 or higher order matrices we use the following:
               % (We can define n and matrix A in Command Window
               for i=1:n
                   y=y+(−1)^(i+1)*A(1,i)*detnxn(A(2:n, [1:(i−1) (i+1):n]));
               end
               %
               % To run this program, define the nxn matrix in
               % MATLAB's Command Window as A=[....] and then
               % type detnxn(A) at the command prompt.

               Some useful properties of determinants are given below.

               Property 1:
               If all elements of one row or one column are zero, the determinant is zero. An example of this is the
               determinant of the cofactor  c[]  above.

               Property 2:

               If all the elements of one row or column are m times the corresponding elements of another row or col-
               umn, the determinant is zero. For example, if


                                                         2   4  1
                                                   A =   3   6  1                                      (4.28)
                                                         1  2   1
               then,


                                         2   4   1  2   4
                                detA =   3   6   1  3   6  =  12 ++  6 –  6 4 –  12 =  0               (4.29)
                                                                          –
                                                                  4
                                         1   2   1  1   2

               Here, detA   is zero because the second column in   is 2 times the first column.
                                                               A
               Check with MATLAB:


               A=[2  4  1; 3  6  1; 1  2  1]; det(A)

               ans =
                    0

               Numerical Analysis Using MATLAB® and Excel®, Third Edition                             4−17
               Copyright © Orchard Publications
   130   131   132   133   134   135   136   137   138   139   140