Page 137 - Numerical Analysis Using MATLAB and Excel
P. 137

Cramer’s Rule

               Solution:

               Rearranging the unknowns  , and transferring known values to the right side, we obtain
                                          v

                                                   2v –  v +  3v =  5
                                                          2
                                                      1
                                                               3
                                                 – 4v –  3v –  2v =  8                                 (4.33)
                                                          2
                                                     1
                                                               3
                                                     3v + v –  v =  4
                                                               3
                                                       1
                                                           2
               Now, by Cramer’s rule,
                                      2 – 1   3    2 – 1
                               Δ =   – 4 – 3 – 2  – 4 – 3  =  6 +  6 –  12 +  27 + +  4 =  35
                                                                            4
                                      3   1 – 1   3    1
                                     5 – 1   3  5 – 1
                              D =    8 – 3 – 2  8 – 3  =  15 + +  24 +  36 + 10 8 =  85
                                                              8
                                                                             –
                               1
                                     4   1 – 1  4   1
                                      2   5   3    2  5
                              D =    – 4  8 – 2   – 4  8  =  –  16 –  30 –  48 –  72 +  16 20 =  – 170
                                                                                  –
                               2
                                      3   4 – 1    3   4
                                      2 – 1   5   2 –  1
                              D =    – 4 – 3  8  – 4 – 3  =  –  24 – 24 – 20 +  45 16 16 =  – 55
                                                                              –
                                                                                  –
                               3
                                      3   1   4   3   1
               Therefore, using (4.31) we obtain

                           D     85    17           D      170     34           D      55     11
                                                     2
                                                                                  3
                            1
                     x =   ------ =  ------ =  ------  x =  ------ =  – --------- =  – ------  x =  ------ =  – ------ =  – ------  (4.34)
                           Δ
                                                                                Δ
                                                                            3
                                                    Δ
                                               2
                       1
                                 35
                                                                   7
                                                           35
                                                                                       35
                                       7
                                                                                               7
               We will verify with MATLAB as follows.
               % The following script will compute and display the values of v , v  and v .
                                                                            1  2      3
               format rat                              % Express answers in ratio form
               B=[2  −1  3;  −4  −3  −2;  3  1 −1];    % The elements of the determinant D
               delta=det(B);                           % Compute the determinant D of B
               d1=[5  −1  3;  8  −3  −2;  4  1  −1];  % The elements of D
                                                                           1
               detd1=det(d1);                         % Compute the determinant of D
                                                                                      1
               d2=[2  5  3;  −4  8  −2;  3  4  −1];   % The elements of D
                                                                           2
               detd2=det(d2);                         % Compute the determinant of D
                                                                                      2
               d3=[2  −1  5; −4  −3  8;  3  1  4];    % The elements of D
                                                                           3
               detd3=det(d3);                         % Compute he determinant of D
                                                                                     3
               Numerical Analysis Using MATLAB® and Excel®, Third Edition                             4−19
               Copyright © Orchard Publications
   132   133   134   135   136   137   138   139   140   141   142