Page 140 - Numerical Analysis Using MATLAB and Excel
P. 140

Chapter 4  Matrices and Determinants


                                                      α 11  α 21  α 31  …α n1

                                                      α 12  α 22  α 32  …α n2
                                             adjA =   α 13  α 23  α 33  …α n3                          (4.41)
                                                       …… … … …
                                                      α 1n  α 2n  α 3n  …α nn


                We observe that the cofactors of the elements of the ith  row (column) of  , are the elements of
                                                                                       A
                the ith  column (row) of adjA .



                Example 4.12
                Compute adjA   given that

                                                          1   2 3
                                                    A =   1   3 4                                      (4.42)
                                                          143
                Solution:


                                                3  4   –  2  3       2  3
                                              4   3      4  3       34
                                                                               – 7 6 – 1
                                   adjA =   –  1  4          1  3  –  2  3  =   10 –   1
                                              1   3      1  3        3  4
                                                                                  –
                                                                                12     1
                                              1   3      –  12       12
                                              1   4      14          13





                4.9 Singular and Non−Singular Matrices

                An   square matrix   is called singular if detA =  0 ; if detA ≠  , 0  A is called non−singular. If an n
                    n
                                    A
                square matrix   is nearly singular, that is, if the determinant of that matrix is very small, the
                              A
                matrix is said to be ill−conditioned. This topic is discussed in Appendix C.


                Example 4.13
                Given that






               4−22                             Numerical Analysis Using MATLAB® and Excel®, Third Edition

                                                                             Copyright © Orchard Publications
   135   136   137   138   139   140   141   142   143   144   145