Page 168 - Numerical Analysis Using MATLAB and Excel
P. 168

Solutions of Ordinary Differential Equations (ODE)

               Proof:

               Let us assume that y t()  is a solution of (5.13); then by substitution,
                                   1

                                         n
                                       d y         d  n –  1 y    dy
                                                         1
                                                                     1
                                           1
                                     a ----------- +  a n –  1 ------------------ +  … + a -------- + a y =  0  (5.15)
                                                                         0
                                      n
                                                                 1
                                                                            1
                                        dt n       dt n –  1       dt
               A solution of the form k y t()  will also satisfy (5.13) since
                                       1 1
                                  n              d  n –  1           d
                                 d
                               a ------- k y(  n  1  1 )  + a n –  1 ------------- k y(  1  1 )  +  …  a ---- k y ) ( +  1  1  a k y ) ( +  1  1
                                                                      -
                                                                    1
                                                                                 0
                                 dt n           dt n –  1            dt
                                                                                                       (5.16)
                                           n
                                       ⎛  d y        d  n –  1 y     dy        ⎞
                                                           1
                                                                       1
                                              1
                                       ⎜
                                   =  k a ----------- +  a n –  1 ------------------ +  … + a -------- + a y ⎟  0  1  =  0
                                         n
                                                                    1
                                      1
                                       ⎝   dt n       dt n –  1       dt       ⎠
               If y =  y t()  and y =  y t()  are any two solutions, then y =  y t() +  y t()  will also be a solution
                                      2
                       1
                                                                            1
                                                                                   2
               since
                                            n          n –  1
                                          d y        d    y          dy
                                                           1
                                                                        1
                                              1
                                        a ----------- + a n –  1 ------------------ +  … +  a -------- +  a y =  0
                                                                    1
                                                                              1
                                                                            0
                                         n
                                           dt n       dt  n –  1      dt
               and
                                            n
                                          d y         d  n –  1 y    dy
                                              2
                                                                        2
                                                           2
                                         a ----------- +  a n –  1 ------------------ + … +  a ---------- +  a y =  0
                                                                    1
                                         n
                                                                               2
                                                                            0
                                           dt n       dt  n –  1      dt
               Therefore,
                              n                n –  1
                            d                 d                     d
                                                                                  (
                          a ------- y +(  n  1  y )  2  +  a n –  1 ------------- y +(  1  y )  2  +  …  a ----- y +  y )  2  +  a y +  y )  2  (5.17)
                                                                      ( +
                                                                   1
                                                                                 0
                                                                        1
                                                                                    1
                            dt n              dt n –  1             dt
                                                   d  n        d  n –  1       d
                                              =  a ------- y +  a n –  1 ------------- y +  … +  a ----- y + a y 1
                                                 n
                                                                                       0
                                                       1
                                                                                   1
                                                                              1
                                                                     1
                                                  dt n        dt n –  1        dt
                                              d  n        d  n –  1        d
                                                                           -
                                          + a ------- y +  a n –  1 ------------- y +  … +  a ---- y +  a y =  0
                                                                                     2
                                                                         1
                                                  2
                                                                              2
                                                                 2
                                                                                  0
                                             n
                                              dt n       dt n –  1        dt
               In general, if
                                            y=  k y t() k y t() k y t() … k y t(),,,  2 1  3 3  ,  n n
                                                1 1
               are the   solutions of the homogeneous ODE of (5.13), the linear combination
                       n
                                         y=  k y t() +  k y t() +  k y t() + … +  k y t()
                                                                             n n
                                                                3 3
                                              1 1
                                                       2 1
               is also a solution.
               In our subsequent discussion, the solution of the homogeneous ODE, i.e., the complementary
               Numerical Analysis Using MATLAB® and Excel®, Third Edition                               5−7
               Copyright © Orchard Publications
   163   164   165   166   167   168   169   170   171   172   173