Page 27 - Numerical Methods for Chemical Engineering
P. 27

16      1 Linear algebra



                   where

                                 (3, 2)  (3, 1)  (2, 1)   (3, 2)  (3, 1)  (2, 1)
                                a 3 j  ≡ a 3 j  − λ 32 a 2 j  b 3  ≡ b 3  − λ 32 b 2  (1.84)
                   For our example (A, b) (3,1)  (1.80) we obtain

                                              (3, 1)    (2,1)
                                        λ 32 = a  a    = (−2)/(−1) = 2                (1.85)
                                              32   22
                   so that

                                                                                  
                                     1         1            1              4
                        (A, b) (3,2)  =   0  −1            1             −1       
                                     0[(−2) − (2)(−1)]  [3 − (2)(1)]  [(−10) − (2)(−1)]
                                     1   1   1   4
                                                  
                                  =   0  −11   −1                                   (1.86)
                                     0   0   1  −8
                   For N > 3, we perform another N − 3 row operations to place all zeros below the principal
                   diagonal in the second column, yielding

                                                                         
                                        a 11  a 12  a 13  ...  a 1N   b 1
                                              (2, 1)  (2, 1)   (2, 1)  (2, 1) 
                                        0   a 22  a 23   ...  a 2N  b 2  
                                       
                                                   (3, 2)     (3, 2)     
                           (A, b) (N, 2)  =  0  0  a 33  ...  a 3N  b 3 (3, 2)      (1.87)
                                       
                                                                          
                                         .     .     .     .    .      .  
                                        .     .     .     .    .      .
                                       
                                        .     .     .     .    .      .  
                                                                          
                                                    (N, 2)     (N, 2)  (N, 2)
                                         0    0    a      ... a      b
                                                    N3         NN     N
                   We then perform a sequence of row operations to place all zeros in the third column below
                   the (3, 3) position, then in column 4, we put all zeros below (4, 4), etc. When finished, the
                   augmented matrix is upper triangular, containing only zeros below the principal diagonal
                   a 11 , a 22 ,..., a NN :
                                                                               
                                    a 11  a 12  a 13  a 14  ...   a 1N     b 1
                                          (2, 1)  (2, 1)  (2, 1)  (2, 1)   (2, 1) 
                                    0   a     a     a     ...   a        b
                                   
                                          22    23    24          2N       2    
                                                                               
                                                (3, 2)  (3, 2)    (3, 2)
                                    0    0    a 33  a 34  ...   a 3N     b (3, 2) 
                                   
                                                                           3
                                                                                
                     (A, b) (N, N−1)  =              (4, 3)      (4, 3)             (1.88)
                                    0    0      0   a 44  ...   a 4N     b  (4, 3) 
                                   
                                                                           4
                                                                                
                                     .    .     .     .           .        .   
                                    .     .     .     .           .        .
                                    .     .     .     .           .        .   
                                                                                
                                                                 (N, N−1)  (N, N−1)
                                     0    0      0     0   ... a         b
                                                                 NN       N
                   For our example, the final augmented matrix is
                                                                  
                                                     1   1   1   4
                                         (A, b) (3, 2)  =   0  −11  −1              (1.89)
                                                     0   0   1  −8
   22   23   24   25   26   27   28   29   30   31   32