Page 24 - Numerical Methods for Chemical Engineering
P. 24

Elimination methods for solving linear systems                        13



                  matrix (A, b) of dimension N × (N + 1),
                                                                 
                                                      ...
                                                 a 11      a 1N  b 1
                                                .          .
                                                .          .    . 
                                                  .         .    . . 
                                                                 
                                                     ...         
                                                a j1      a jN  b j 
                                                 .         .    .  
                                                .
                                        (A, b) =   .       . .  .                  (1.63)
                                                                 . 
                                                                 
                                                a k1  ...  a kN  b k  
                                                .          .     
                                               
                                                . .        . .  . . 
                                                                 . 
                                                 a N1  ... a NN  b N
                  After the operation k ← c × j + k, the augmented matrix is
                                                                        
                                                ...
                                        a 11            a 1N        b 1
                                         .               .           .
                                        .               .           .   
                                         .               .           .
                                                                        
                                                                        
                                                                        
                                        a j1    ...     a jN        b j
                                                                        
                                        .               .           .   

                          (A, b) =      . .             . .         . .            (1.64)
                                                                        
                                                                        
                                   (ca j1 + a k1 )
                                                ... (ca jN + a kN )(cb j + b k ) 
                                         .               .           .
                                                                        
                                        .               .           .   
                                        .               .           .   
                                       a N1     ...     a NN        b N
                  Gaussian elimination to place Ax = b in upper triangular form
                  We now build a systematic approach to solving Ax = b based upon a sequence of ele-
                  mentary row operations, known as Gaussian elimination. First, we start with the original
                  augmented matrix
                                                                      
                                            a 11  a 12  a 13  ...  a 1N  b 1
                                                           ...
                                           a 21  a 22  a 23    a 2N  b 2  
                                                                      
                                            a 31  a 32  a 33    a 3N                 (1.65)
                                                          ...         
                                   (A, b) =                         b 3 
                                           .     .    .    .    .
                                           . .   . .  . .  . .  . .  . 
                                                                      .
                                                                      . 
                                            a N1  a N2  a N3  ... a NN  b N
                  As long as a 11  = 0 (later we consider what to do if a 11 = 0), we can define the finite scalar
                                                λ 21 = a 21 /a 11                    (1.66)
                  and perform the row operation 2 ← 2 − λ 21 × 1,
                     −λ 21 (a 11 x 1 + a 12 x 2 +· · · + a 1N x N = b 1 ) + (a 21 x 1 + a 22 x 2 +· · · + a 2N x N = b 2 )
                      (a 21 − λ 21 a 11 )x 1 + (a 22 − λ 21 a 12 )x 2 + ··· + (a 2N − λ 21 a 1N )x N = (b 2 − λ 21 b 1 )
                                                                                     (1.67)
                  The coefficient multiplying x 1 in this new equation is zero:

                                                     a 21
                                  a 21 − λ 21 a 11 = a 21 −  a 11 = a 21 − a 21 = 0  (1.68)
                                                     a 11
   19   20   21   22   23   24   25   26   27   28   29