Page 20 - Numerical Methods for Chemical Engineering
P. 20

Review of scalar, vector, and matrix operations                        9



                  Av is also an N-dimensional vector, whose j th component is


                                                                    N

                                 (Av) j = a j1 v 1 + a j2 v 2 + ··· + a jN v N =  a jk v k  (1.46)
                                                                   k=1

                  We compute (Av) j by summing a jk v k along rows of A and down the vector,

                                                                  

                                                                  
                                                                 v k
                                        ⇒⇒ a jk     ⇒⇒            
                                                                  




                  Multiplication of an M × N matrix A with an N-dimensional vector v
                  From the rule for forming Av, we see that the number of columns of A must equal the
                  dimension of v; however, we also can define Av when M  = N,

                                                                                
                             a 11  a 12  ...  a 1N  v 1     a 11 v 1 + a 12 v 2 + ··· + a 1N v N
                             a 21  a 22    a 2N    v 2      a 21 v 1 + a 22 v 2 + ··· + a 2N v N
                                      ...                                       
                           
                      Av =  .     .                               .             
                            . .   . .       .   .  =              . .           
                                                   .
                                             .
                                                                                     
                                                         
                                             .   . 
                            a M1  a M2  ... a MN   v N     a M1 v 1 + a M2 v 2 +· · · + a MN v N
                                                                                     (1.47)
                                                     M
                         N
                  If v ∈  , for an M × N matrix A, Av ∈  . Consider the following examples:
                                       1                   123               14
                                                                           
                                                                 
                      1   2   3   4            30                     1
                                       2                   312               11
                                                                           
                      4   3   2   1      =  20                    2  =         (1.48)
                                                                  
                                       3                   456               32
                                                                           
                      11  12 13   14           130                    3
                                       4                   564               29
                  Note also that A(cv) = cAv and A(v + w) = Av + Aw.
                  Matrix transposition
                                                          T
                  We define for an M × N matrix A the transpose A to be the N × M matrix
                                                  T
                                                                         
                                a 11  a 12  ...  a 1N    a 11  a 21  ...  a M1
                                a 21  a 22    a 2N       a 12  a 22    a M2
                                         ...                    ...     
                          T                                             
                         A =  .      .         .  =  .      .                     (1.49)
                               . .   . .       . .    . .   . .       . 
                                                                         .
                                                                         . 
                               a M1  a M2  ... a MN      a 1N  a 2N  ... a NM
   15   16   17   18   19   20   21   22   23   24   25