Page 16 - Numerical Methods for Chemical Engineering
P. 16

Review of scalar, vector, and matrix operations                        5



                                 N
                    We write v ∈  as an expansion in coordinate basis vectors as
                                              [1]    [2]         [N]
                                        v = v 1 e  + v 2 e  + ··· + v N e            (1.20)
                  where the components of e [ j]  are Kroenecker deltas δ jk ,

                                        [ j]  
                                        e 1      δ j1  
                                         [ j]  
                                      
                                       e       δ j2          1,  if j = k
                                 e [ j]  =   .   =  .   δ jk =                   (1.21)
                                       2 
                                               
                                                    
                                                  .
                                         .
                                       .      .             0,  if j  = k
                                          
                                         [ j]   δ jN
                                        e
                                         N
                                              N
                                                      N
                  Addition of two real vectors v ∈  , w ∈  is straightforward,
                                                                 
                                              v 1     w 1      v 1 + w 1
                                              v 2     w 2      v 2 + w 2
                                                                 
                                                                 
                                                                  .                  (1.22)
                                    v + w =  .  +  .  =      .   
                                              .        .          .
                                             .     .             
                                             v N      w N      v N + w N
                                                N
                  as is multiplication of a vector v ∈  by a real scalar c ∈ ,
                                                            
                                                   v 1      cv 1
                                                   v 2      cv 2  
                                                                                     (1.23)
                                                            
                                           cv = c  .  =  . 
                                                             .
                                                    .
                                                  .      . 
                                                   v N     cv N
                                  N
                  For all u, v, w ∈  and all c 1 , c 2 ∈ ,
                                 u + (v + w) = (u + v) + w  c(v + u) = cv + cu
                                     u + v = v + u     (c 1 + c 2 )v = c 1 v + c 2 v  (1.24)
                                         v + 0 = v     (c 1 c 2 )v = c 1 (c 2 v)
                                             v + (−v) = 0   1v = v
                                         N
                  where the null vector 0 ∈  is
                                                       0
                                                      
                                                       0
                                                      
                                                                                     (1.25)
                                                      
                                                  0 =  . 
                                                       .
                                                      . 
                                                       0
                                                                                  N
                  We further add to the list of operations associated with the vectors v, w ∈   the dot
                  (inner, scalar) product,
                                                                   N

                                  v · w = v 1 w 1 + v 2 w 2 +· · · + v N w N =  v k w k  (1.26)
                                                                  k=1
   11   12   13   14   15   16   17   18   19   20   21