Page 121 - Numerical methods for chemical engineering
P. 121

Eigenvalues/eigenvectors of a 2 × 2 real matrix                     107



                  Eigenvalues/eigenvectors of a 2 × 2 real matrix

                  Before discussing general eigenvector properties, let us consider the case of a 2×2 real
                  matrix, for which analytical calculation of eigenvalues is easy,

                                          a 11 − λ  a 12
                            det(A − λI) =                = (a 11 − λ)(a 22 − λ) − a 21 a 12
                                         a 21
                                                a 22 − λ
                                          2
                                      = λ − (a 11 + a 22 )λ + (a 11 a 22 − a 21 a 12 )  (3.17)
                  As the trace (the sum of the diagonal values) and the determinant of A are
                                                                                     (3.18)
                                   tr(A) = a 11 + a 22  det(A) = a 11 a 22 − a 21 a 12
                  then, using the shorthand T = tr(A), D = det(A),
                                                               √   2
                                          2
                            det(A − λI) = λ − T λ + D  λ 1,2 =  T ±  T − 4D          (3.19)
                                                                  2
                  In terms of the elements of A, the eigenvalues are

                                 1           1          2
                           λ 1,2 = (a 11 + a 22 ) ±  (a 11 + a 22 ) − 4(a 11 a 22 − a 21 a 12 )  (3.20)
                                 2           2
                  For any 2 × 2 real matrix A, the trace equals the sum of the eigenvalues,
                                          λ 1 + λ 2 = a 11 + a 22 = tr(A)            (3.21)
                  Also, we have the following properties for a real 2×2 matrix:
                         2
                  1   if T − 4D > 0, then both eigenvalues are real;
                         2
                                             1
                  2   if T − 4D = 0,λ 1 = λ 2 = (a 11 + a 22 );
                                             2
                         2
                  3   if T − 4D < 0, both eigenvalues are complex and λ 2 = λ 1 .
                  Also, note that the determinant equals the product of the eigenvalues,
                           1                                1  2     2
                                                  2
                                    2
                     λ 1 λ 2 =  (T +  T − 4D)(T −  T − 4D) =  [T − (T − 4D)] = D     (3.22)
                           4                                4
                  Thus, A is singular if it has one or more zero eigenvalues.
                    We now consider some special cases of 2 × 2 real matrices.
                  A is triangular



                                             a 11  a 12
                                        A =             det(A) = a 11 a 12           (3.23)
                                             0   a 22
                  The eigenvalues are

                                                      2
                                 (a 11 + a 22 ) ±  (a 11 + a 22 ) − 4a 11 a 22
                           λ 1,2 =                              ={a 11 , a 22 }      (3.24)
                                                2
                  For any upper triangular matrix, the eigenvalues are found on the principal diagonal. This
                  also is true for lower triangular and diagonal matrices,

                                          a 11  0              a 11  0
                                     A =                 A =                         (3.25)
                                          a 21  a 22           0   a 22
   116   117   118   119   120   121   122   123   124   125   126