Page 183 - Numerical methods for chemical engineering
P. 183

Linear ODE systems and dynamic stability                            169



                  Thus, as   f    s ≈  f    exact , we have the approximate value for the integral
                      '  1  '  1
                             f (x, y)  r≤1 (x, y)dxdy ≈ A sd   f    s
                       −1  −1
                                                       N s
                                                   A sd  	 $  [k]  [k]  %  $  [k]  [k]  %
                                                 =        f x , y     r≤1 x , y      (4.88)
                                                    N s
                                                       k=1
                  The following code uses this method to obtain an approximate value for the integral of
                  (4.82) in good agreement with that obtained from dblquad.
                  Numlter = 5000000; % increase for greater accuracy
                  f sum=0;
                  for iter = 1:Numlter
                                         *
                    x = -1 + 2*rand; y = -1 + 2 rand;
                    r=xˆ2+yˆ2;
                    if(r <=1)
                                                * *
                                         *
                      f sum=f sum+xˆ2+2 yˆ2-2 x y;
                    end
                  end
                  f avg=f sum/Numlter;
                  area = 4;
                                 *
                  int 2D MC = f avg area,
                    int 2D MC = 2.3563

                  Linear ODE systems and dynamic stability


                  We now resume our discussion of IVPs, starting with a system of linear first-order ODEs
                  ˙ x = Ax,
                                                                              
                       ˙ x 1 = a 11 x 1 + a 12 x 2 +· · · + a 1N x N  ˙ x 1  a 11 a 12 ··· a 1N  x 1
                       ˙ x 2 = a 21 x 1 + a 22 x 2 +· · · + a 2N x N    ˙ x 2      a 21 a 22 ··· a 2N     x 2  
                                                                              
                                    .                .  =    .   .      .    . 
                                    .                           .   .      .
                                                       .
                                    .                .       .   .      .    . 
                                                                                  .
                      ˙ x N = a N1 x 1 + a N2 x 2 +· · · + a NN x N  ˙ x N  a N1 a N2 ··· a NN  x N
                                                                                     (4.89)
                  that can be solved analytically. Hence, we use it to test the performance of numerical
                  integration algorithms. For a single equation, the solution is
                                              at [0]
                                                            at [0]
                                       x(t) = e x     ˙ x = ae x  = ax               (4.90)
                  For multiple ODEs the solution is of a similar form
                                                       At [0]
                                                x(t) = e x                           (4.91)
                  where we define the matrix exponential function as
                                              1      1        1
                                  A
                                 e = I + A +    AA +   AAA +    AAAA +· · ·          (4.92)
                                             2!      3!       4!
   178   179   180   181   182   183   184   185   186   187   188