Page 29 - Numerical methods for chemical engineering
P. 29

Elimination methods for solving linear systems                        15



                  The augmented matrix after this operation is
                                                                       
                                        a 11  a 12  a 13  ...  a 1N  b 1
                                              (2, 1)  (2, 1)   (2, 1)  (2, 1) 
                                       0    a 22  a 23  ... a 2N   b 2  
                                      
                                             (3, 1)  (3, 1)   (3, 1)   
                           (A, b) (3, 1)  =  0  a  a    ... a      b (3,1)         (1.77)
                                      
                                              32    33        3N     3  
                                       .      .     .    .    .     .  
                                      
                                       . .    . .   . .  . .  . .   . .  
                                                                        
                                                         ...
                                        a N1  a N2  a N3      a NN   b N
                  where
                                     (3, 1)               (3, 1)
                                    a                    b                           (1.78)
                                     3 j  ≡ a 3 j − λ 31 a 1 j  3  ≡ b 3 − λ 31 b 1
                  For the example system (1.72),
                                                   a 31  3
                                              λ 31 =   =   = 3                       (1.79)
                                                   a 11  1
                  and
                                                                              
                                            1         1         1         4
                           (A, b) (3,1)  =    0     −1         1        −1    
                                        [3 − 3(1)]  [1 − 3(1)] [6 − 3(1)] [2 − 3(4)]

                                        1   1   1   4
                                                      
                                    =   0  −11    −1                               (1.80)
                                        0  −23     −10
                  In general, for N > 3, we continue this procedure until all elements of the first column are
                  zero except a 11 . The augmented system matrix after this sequence of row operations is
                                                                        
                                       a 11  a 12   a 13  ...  a 1N   b 1
                                             (2, 1)  (2, 1)    (2, 1)  (2, 1) 
                                       0   a 22   a 23  ...  a  2N  b 2  
                                      
                                            (3, 1)  (3, 1)    (3, 1)    
                          (A, b) (N,1)  =  0  a 32  a 33  ...  a 3N  b  (3, 1)     (1.81)
                                      
                                                                     3
                                                                         
                                        .    .      .    .     .     .  
                                       .     .      .    .     .     .
                                       .     .      .    .     .     .  
                                                                         
                                             (N, 1)  (N, 1)    (N, 1)  (N, 1)
                                        0   a     a      ... a      b
                                             N2     N3         NN    N
                  We now move to the second column and perform row operations to place zeros everywhere
                                                 (2,1)
                  below the diagonal (2, 2) position. If a   = 0, we define
                                                 22
                                                     (3, 1)    (2, 1)
                                              λ 32 = a   a                           (1.82)
                                                    32    22
                  and perform the row operation 3 ← 3 − λ 32 × 2, to obtain
                                                                        
                                       a 11  a 12  a 13  ...  a 1N   b 1
                                             (2, 1)  (2, 1)    (2, 1)  (2, 1) 
                                      0    a 22   a 23  ...  a 2N  b 2  
                                     
                                                                        
                                (3, 2)              (3, 2)     (3, 2)
                           (A, b)  =  0      0    a 33  ...  a 3N  b  (3, 2)       (1.83)
                                     
                                                                     3
                                                                         
                                        .     .     .     .    .      .  
                                      .      .     .     .    .      .
                                     
                                      .      .     .     .    .      .  
                                                                         
                                             (N, 1)  (N, 1)   (N, 1)  (N, 1)
                                        0   a     a      ... a      b
                                             N2    N3         NN     N
   24   25   26   27   28   29   30   31   32   33   34