Page 33 - Numerical methods for chemical engineering
P. 33

Elimination methods for solving linear systems                        19



                  Gauss–Jordan elimination

                  In Gaussian elimination, we convert the system Ax = b into an upper triangular form
                                3
                  Ux = c after 2N /3 FLOPs,
                                                                   
                                    u 11  u 12  u 13  ...  u 1N  x 1  c 1
                                       u 22  u 23  ...  u 2N    x 2     c 2  
                                                                   
                                             u 33                                    (1.98)
                                                 ...               
                                                     u 3N    x 3  =   c 3 
                                                  .
                                                 .    .   .      . 
                                                              .
                                                                       .
                                                  .   . .   .    . 
                                                      u NN   x N      c N
                                                                2
                  that we then solve by backward substitution in another N FLOPs. Instead of performing
                  backward substitution, we could continue the row operations to place zeros above the
                  diagonal, to obtain a diagonal system Dx = f ,
                                                                 
                                      d 11                 x 1      f 1
                                          d 22           x 2      f 2  
                                                                               (1.99)
                                               .
                                               .        .  =  . 
                                                                    .
                                                            .
                                                .       .     . 
                                                   d NN    x N      f N
                  The solution is now computed very easily, x j = f j /d jj . This approach, Gauss–Jordan
                  elimination, is rarely used in computational practice.
                  Partial pivoting
                  Let us consider again the first row operation in Gaussian elimination. We start with the
                  original augmented matrix of the system,
                                                                       
                                             a 11  a 12  a 13  ...  a 1N  b 1
                                            a 21          ...          
                                                  a 22  a 23    a 2N  b 2
                                                                       
                                                          ...          
                                             a 31  a 32  a 33   a 3N                (1.100)
                                   (A, b) =                         b 3 
                                            .     .   .         .
                                            . .   . .  . .      . .  . 
                                                                      .
                                                                      . 
                                            a N1  a N2  a N3  ... a NN  b N
                  and perform the row operation 2 ← 2 + λ 21 × 1 to obtain
                                                                                      
                                    a 11         a 12     ...      a 1N          b 1
                               (a 21 − λ 21 a 11 )(a 22 − λ 21 a 12 )
                                                          ... (a 2N − λ 21 a 1N )(b 2 − λ 21 b 1 ) 
                                                                                      
                   (A, b) (2, 1)  =   a 31      a 32     ...      a 3N          b 3   
                              
                                                                                       
                                     .            .                  .            .
                                     .            .                  .            .
                                                                                      
                                    .            .                  .            .    
                                                          ...
                                    a N1         a N2              a NN          b N
                                                                                    (1.101)
                  To place a zero at the (2,1) position, we define λ 21 as
                                                                                    (1.102)
                                                λ 21 = a 21 /a 11
                  but if a 11 = 0,λ 21 blowsupto ±∞. What do we do then?
   28   29   30   31   32   33   34   35   36   37   38