Page 108 - Organic Electronics in Sensors and Biotechnology
P. 108
Or ganic Thin-Film Transistors for Inor ganic Substance Monitoring 85
The results confirm that Au-NP based FET sensors are able to
detect NO at concentration levels ranging from 50 to 200 ppm, with
x
high selectivity toward other species The increase of the operating
.
temperature from 150 to 175°C doubled the S/N ratio and improved
the sensitivity and recovery features, although a certain decrease in
the selectivity was observed as well.
We recently obtained some promising results on In O -NPs doped
2 3
with electrosynthesized Au-NPs as catalytic sensing layer in capaci-
tive FET sensors for NO monitoring. The Au-In O mixed system
206
x 2 3
was shown to exhibit enhanced sensing properties, at temperatures
as high as 400°C.
For low-temperature applications, active layers exclusively com-
posed of Au-NPs remain an interesting sensing material for NO
x
detection, and further research is in progress to improve their stability
at higher operating temperatures.
The possibility to work at temperatures higher than 200°C will
also enable faster response and recovery times, and this will allow the
sensor implementation in real systems, such as the manifold of cars,
for the online monitoring of NO .
x
References
1. K. Alving, E. Weitzberg, and J. M. Lundberg, Eur. Respir. J., 6:1368–1370
(1993).
2. Y. H. Chen, W Z. Yao, B. Geng, Y. L. Ding, M. Lu, M.W. Zhao, and C. S. Tang,
Chest, 128:3205–3211 (2005).
3. I. Horvath, S. Loukides, and T. Wodehouse, Thorax, 53:867–870 (1998).
4. L. E. Otterbein, F. H. Bach, J. Alam, M. Soares, V. Lu, M. Wysk, R. J. Davis,
et al., Nat. Med., 6:422–428 (2000).
5. J. D. Antuni, S. A. Kharitonov, D. Hughes, M. E. Hodson, and P. J. Barnes,
Thorax, 55:138–142 (2000).
6. M. D. Mines, Annu. Rev. Pharmacol. Toxicol., 37:517–554 (1997).
7. H. J. Vreman, R. J. Wong, and D. K. Stevenson, “Carbon Monoxide in Breath,
Blood, and Other Tissues,” in Carbon Monoxide Toxicity, D. G. Penney (ed.),
CRC Press, Boca Raton, Fa., 2000, pp. 19–59.
8. M. Yamaya, M. Hosoda, S. Ishizuka, M. Monma, T. Matsui, T. Suzuki,
K. Sekizawa, et al., Clin. Exp. Allergy, 31:417–422 (2001).
9. S. Lim, D. Groneberg, A. Fischer, T. Oates, G. Caramori, W. Mattos, I. Adcock,
et al., Am. J. Respir. Crit. Care Med., 162:1912–1918 (2000).
10. P. Paredi, P. L. Shah, P. Montuschi, P. Sullivan, M. E. Hodson, S. A. Kharitonov,
and P. J. Barnes, Thorax, 54:917–920 (1999).
11. M. Scharte, H. G. Bone, H. Van Aken, and J. Meyer, Biochem. Biophys. Res.
Commun., 267:423–426 (2000).
12. H. H. Schmidt, H. Hofmann, U. Schindler, Z. S. Shutenko, D. D. Cunningham,
and M. Feelisch, Proc. Nat. Acad. of Sci. USA, 93(25):14492–14497 (1996).
13. S. Moncada, M. W. Radomski, and R. M. Palmer, Biochem. Pharmacol.,
37:2495–2501 (1988).
14. W. Xu, S. Zheng, R. A. Dweik, and S. C. Erzurum, Free Radical Bio. Med.,
41:19–28 (2006).
15. B. Gaston, J. M. Drazen, J. Loscalzo, and J. S. Stamler, Am. J. Respir. Crit. Care
Med., 149:538–551 (1994).
16. P. J. Barnes, and M. G. Belvisi, Thorax, 48:1034–1043 (1993).
17. S. Kharitonov, K. Alving, and P. J. Barns, Eur. Resp. J., 10:1683–1693 (1997).