Page 113 - Organic Electronics in Sensors and Biotechnology
P. 113
90 Cha pte r T w o
156. T. L. Chang, Y. W. Lee, C. C. Chen, and F. H. Ko, Microelectron. Eng., 84:1698–1701
(2007).
157. A. Abad, P. Concepción, and A. Corma, Angew. Chem. Int. Ed. Engl., 44:4066–4069
(2005).
158. M. Haruta, Catalysis Today, 36:153–156 (1997).
159. S. Panigrahi, S. Basu, S. Praharaj, S. Pande, S. Jana, A. Pal, S. Kumar Ghosh,
et al., J. Phys. Chem. C, 111:4596–4605 (2007).
160. D. S. Evans, S. R. Johnson, Y. L. Cheng, and T. Shen, J. Mater. Chem., 10:183–187
(2000).
161. C. Grate, D. A. Nelson, and R. Skraggs, Anal. Chem., 75:1868–1879 (2003).
162. H. L. Zhang, S. D. Evans, J. R. Henderson, R. E. Miles, and T. H. Shen,
Nanotechnology, 13:439–444 (2002).
163. T. Vossmeyer, B. Guse, I. Besnard, R. E. Bauer, K. Muellen, and A. Yasuda, Adv.
Mater., 14:238–242 (2002).
164. A. Singh, M. Chaudhari, and M. Sastry, Nanotechnology, 17:2399–2405 (2006).
165. L. Han, D. R. Daniel, M. M. Mayer, and C. J. Zhang, Anal. Chem., 73:4441–4449
(2001).
166. Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. R. Wessels,
U. Wild, et al., J. Phys. Chem. B, 107:7406–7413 (2003).
167. S. Zhuiykov and N. Miura, Sens. Actuat. B, 121:639–643 (2007) and reference
therein; T. H. Richardson, C. M. Dooling, L. T. Jones, and R. A. Brook, Adv.
Coll. Interf. Sci., 16:81–96 (2005).
168. X. Lu, X. Xu, N. Wang, and Q. Zhang, J. Phys. Chem A, 103:10969–10974 (1999)
and references therein.
169. M. D. Hanwell, S. Y. Heriot, T. H. Richardson, N. Cowlam, and I. M. Ross,
Coll. Surf. A, 379:284–285 (2006).
170. D. Filippini, T. Weiss, R. Aragon, and U. Weimar, Sens. Actuat. B, 78:195–201
(2001).
171. A. W. Snow, and H. Wohltjen, U.S. Patent, 6221673 B1, 2001.
172. C. Baratto, G. Sberveglieri, E. Comini, G. Faglia, G. Benussi, V. La Ferrara,
L. Quercia, et al., Sens. Actuat. B, 68:74–80 (2000).
173. H. Steffes, C. Imawan, F. Solzbacher, and E. Obermeier, Sens. Actuat. B, 78:106–112
(2001).
174. P. M. Parthangal, R. E. Cavicchi, and M. R. Zachariah, Nanotechnology, 17:3786–
3790 (2006).
175. E. Ieva, K. Buchholt, L. Colaianni, N. Cioffi, L. Sabbatini, G. C. Capitani,
A. Lloyd Spetz, et al., Sens. Lett., 6:577–584 (2008).
176. E. Ieva, K. Buchholt, L. Colaianni, N. Cioffi, I. D. van der Werf, A. Lloyd
Spetz, P. O. Käll, et al., in The IEEE International Workshop on Advances in
Sensors and Interfaces, June 26–27, 2007, Bari, Italy. IEEE catalog no. 07EX1794;
ISBN 1-4244-1244-7, 2007.
177. D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, Trends Biotech., 24:62–67
(2006).
178. G. Schmid, Cluster and Colloids: From Theory to Applications, VCH, New York,
1994.
179. A. J. Henglein, Phys. Chem., 97:5457–5471 (1993).
180. D. L. Feldein and C. D. Keating, Chem. Soc. Rev., 27:1–12 (1998).
181. J. D. Aiken and R. G. Finke, J. Mol. Catal. A, 145:1–44 (1999).
182. M. A. El-Sayed, Acc. Chem. Res., 34:257–264 (2001).
183. C. J. Zhong and M. M. Maye, Adv. Mater., 13:1507–1511 (2001).
184. C. Mohr, H. Hofmeister, J. Radnik, and P. Claus, J. Am. Chem. Soc., 125:1905–1911
(2003).
185. G. J. Hutchings, Catalysis Today, 100:55–61 (2005).
186. M. A. Hayat, Colloidal Gold, Principles, Methods and Applications, Academic
Press, New York, 1989.
187. J. S. Bradley, Clusters and Colloids, G. Schmid (ed.), VCH, Weinheim, 1994,
Chap. 6, pp. 459–544.
188. J. H. Fendler and F. C. Meldrum, Adv. Mater., 7:607–631 (1995).
189. M. C. Daniel and D. Astruc, Chem. Rev., 104:293–346 (2004).