Page 381 - Organic Electronics in Sensors and Biotechnology
P. 381
358 Chapter Nine
61. Wang, D.; Wang, J.; Moses, D.; Bazan, G. C.; and Heeger, A. J.
Photoluminescence quenching of conjugated macromolecules by bipyri-
dinium derivatives in aqueous media: Charge dependence. Langmuir
17:1262–1266 (2001).
62. Jones, R. M.; Bergstedt, T. S.; McBranch, D. W.; and Whitten, D. G. Tuning
of superquenching in layered and mixed fluorescent polyelectrolytes. J. Am.
Chem. Soc. 123:6726–6727 (2001).
63. Fan, C.; Wang, S.; Hong, J. W.; Bazan, G. C.; Plaxco, K. W.; and Heeger, A. J.
Beyond superquenching: Hyper-efficient energy transfer from conjugated
polymers to gold nanoparticles. Proc. Natl. Acad. Sci. USA 100:6297–6301
(2003).
64. Heeger, P. S.; and Heeger, A. J. Making sense of polymer-based biosensors.
Proc. Natl. Acad. Sci. USA 96:12219–12221 (1999).
65. Kushon, S. A.; Bradford, K.; Marin, V.; Suhrada, C.; Armitage, B. A.; McBranch,
D.; and Whitten, D. Detection of single nucleotide mismatches via fluorescent
polymer superquenching. Langmuir 19:6456–6464 (2003).
66. Gaylord, B. S.; Heeger, A. J.; and Bazan, G. C. DNA hybridization detection
with water-soluble conjugated polymers and chromophore-labeled single
stranded DNA. J. Am. Chem. Soc. 125:896–900 (2003).
67. Liu, B.; and Bazan, G. C. Interpolyelectrolyte complexes of conjugated copo-
lymers and DNA: Platforms for multicolor biosensors. J. Am. Chem. Soc.
126:1942–1943 (2004).
68. Xu, Q-H.; Gaylord, B. S.; Wang, S.; Bazan, G. C.; Moses, D.; and Heeger, A.
J. Time-resolved energy transfer in DNA sequence detection using water-
soluble conjugated polymers: The role of electrostatic and hydrophobic inter-
actions. Proc. Natl. Acad. Sci. USA 101:11634–11639 (2004).
69. Wang, S.; Gaylord, B. S.; and Bazan, G. C. Fluorescein provides a resonance
gate for FRET from conjugated polymers to DNA intercalated dyes. J. Am.
Chem. Soc. 126:5446–5451 (2004).
70. Liu, B.; Baudrey, S.; Jaeger, L.; and Bazan, G. C. Characterization of tectoRNA
assembly with cationic conjugated polymers. J. Am. Chem. Soc. 126:4076–4077
(2004).
71. Gaylord, B. S.; Massie, M. R.; Feinstein, S. C.; and Bazan, G. C. SNP detection
using peptide nucleic acid probes and conjugated polymers: Applications in
neurodegenerative disease identification. Proc. Natl. Acad. Sci. USA 102:34–39
(2005).
72. Liu, B.; and Bazan, G. C. Methods for strand-specific DNA detection with
cationic conjugated polymers suitable for incorporation into DNA chips and
microarrays. Proc. Natl. Acad. Sci. USA 102:589–593 (2005).
73. Wang, D.; Gong, X.; Heeger, P. S.; Rininsland, F.; Bazan, G. C.; and Heeger, A. J.
Biosensors from conjugated polyelectrolyte complexes. Proc. Natl. Acad. Sci. USA
99:49–53 (2002).
74. Fan, C.; Plaxco, K. W.; and Heeger, A. J. High efficiency fluorescence quench-
ing of conjugated polymers by proteins. J. Am. Chem. Soc. 124:5642–5643
(2002).
75. Pinto, M. R.; and Schanze, K. S. Amplified fluorescence sensing of protease activ-
ity with conjugated polyelectrolytes. Proc. Natl. Acad. Sci. USA 101:7505–7510
(2004).
76. Kumaraswamy, S.; Bergstedt, T.; Shi, X.; Rininsland, F.; Kushon, S.; Xia, W.; Ley,
K., et al. Fluorescent-conjugated polymer superquenching facilitates highly sen-
sitive detection of proteases. Proc. Natl. Acad. Sci. USA 101:7511–7515 (2004).
77. Dwight, S. J.; Gaylord, B. S.; Hong, J. W.; and Bazan, G. C. Perturbation of fluores-
cence by nonspecific interactions between anionic poly(phenylenevinylene)s
and proteins: Implications for biosensors. J. Am. Chem. Soc. 126:16850–16859
(2004).
78. Rininsland, F.; Xia, W.; Wittenburg, S.; Shi, X.; Stankewicz, C.; Achyuthan, K.;
McBranch, D., et al. Metal ion-mediated polymer superquenching for highly
sensitive detection of kinase and phosphatase activities. Proc. Natl. Acad. Sci.
USA 101:15295–15300 (2004).