Page 383 - Organic Electronics in Sensors and Biotechnology
P. 383
360 Chapter Nine
100. Nilsberth, C.; Westlind-Danielsson, A.; Eckman, C. B.; Condron, M. M.;
Axelman, K.; Forsell, C.; Stenh, C., et al. The ‘Arctic’ APP mutation (E693G)
causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat.
Neurosci. 4:887–893 (2001).
101. Silveira, J. R.; Raymond, G. J.; Hughson, A. G.; Race, R. E.; Sim, V. L.; Hayes,
S. F.; and Caughey, B. The most infectious prion protein particles. Nature
437:257–261 (2005).
102. Nilsson, M. R. Techniques to study amyloid fibril formation in vitro. Methods
34:151–160 (2004).
103. Serpell, L. C.; Sunde, M.; and Blake, C. C. The molecular basis of amyloidosis.
Cell. Mol. Life. Sci. 53:871–887 (1997).
104. Harper, J. D.; Lieber, C. M.; and Lansbury, P. T. Atomic force microscopic
imaging of seeded fibril formation and fibril branching by the Alzheimer’s
disease amyloid-beta protein. Chem. Biol. 4:951–959 (1997).
105. Petkova, A. T.; Ishii, Y.; Balbach, J. J.; Antzutkin, O. N.; Leapman, R. D.;
Delaglio, F.; and Tycko, R. A structural model for Alzheimer’s beta-amyloid
fibrils based on experimental constraints from solid state NMR. Proc. Natl.
Acad. Sci. USA 99:16742–16747 (2002).
106. Ritter, C.; Maddelein, M. L.; Siemer, A. B.; Lührs, T.; Ernst, M.; Meier, B. H.;
Saupe, S. J., et al. Correlation of structural elements and infectivity of the
HET-s prion. Nature 435:844–848 (2005).
107. Makin, O. S.; Atkins, E.; Sikorski, P.; Johansson, J.; and Serpell, L. C. Molecular
basis for amyloid fibril formation and stability. Proc. Natl. Acad. Sci. USA
102:315–320 (2005).
108. Nilsson, K. P. R.; Herland, A.; Hammarström, P.; and Inganäs, O. Conjugated
polyelectrolytes––conformation sensitive optical probes for detection of amy-
loid fibril formation. Biochemistry 44:3718–3724 (2005).
109. Herland, A.; Björk, P.; Nilsson, K. P. R.; Olsson, J. D. M.; Åsberg, P.; Konradsson,
P.; Hammarström, P., et al. Electroactive luminescent self-assembled bio-
organic nanowires: Integration of semiconducting oligoelectrolytes within
amyloidogenic proteins. Adv. Mat. 17:1466–1471 (2005).
110. Nilsson, K. P. R.; Hammarström, P.; Ahlgren, F.; Herland, A.; Schnell, E.
A.; Lindgren, M.; Westermark, G. T., et al. Conjugated polyelectrolytes–
conformation-sensitive optical probes for staining and characterization of
amyloid deposits. Chembiochem. 7:1096–1104 (2006).
111. Nilsson, K. P. R.; Åslund, A.; Berg, I.; Nyström, S.; Konradsson, P.; Herland,
A.; Inganäs, O., et al. Imaging distinct conformational states of amyloid-beta
fibrils in Alzheimer’s disease using novel luminescent probes. ACS Chem. Biol.
2:553–560 (2007).
112. Sigurdson, C. J.; Nilsson, K. P. R.; Hornemann, S.; Manco, G.; Polymenidou,
M.; Schwarz, P.; Leclerc, M., et al. Prion strain discrimination using lumines-
cent conjugated polymers. Nat. Methods. 4:1023–1030 (2007).
113. Stabo-Eeg, F.; Lindgren, M.; Nilsson, K. P. R.; Inganäs, O.; and Hammarström,
P. Quantum efficiency and two-photon absorption cross-section of conjugated
polyelectrolytes used for protein conformation measurements with applica-
tions on amyloid structures. Chem. Phys. 336:121–126 (2007).