Page 380 - Organic Electronics in Sensors and Biotechnology
P. 380
Luminescent Conjugated Polymers for Staining and Characterization of Amyloid Deposits 357
41. Langeveld-Voss, B. M. W.; Christiaans, M. P. T.; Janssen, R. A. J.; and Meijer,
E. W. Inversion of optical activity of chiral polythiophene aggregates by a
change of solvent. Macromolecules 31:6702–6704 (1998).
42. Langeveld-Voss, B. M. W.; Janssen, R. A. J.; and Meijer, E. W. On the origin of
optical activity in polythiophenes. J. Mol. Structure 521:285–301 (2000).
43. Andersson, M. R.; Berggren, M.; Olinga, T.; Hjertberg, T.; Inganäs, O.; and
Wennerström, O. Improved photoluminescence efficiency of films from con-
jugated polymers. Synth. Met. 85:1383–1384 (1997).
44. Berggren, M.; Bergman, P.; Fagerström, J.; Inganäs, O.; Andersson, M.; Weman,
H.; Granström, M., et al. Controlling inter chain and intra-chain excitations
of a poly(thiophene) derivative in thin films. Chem. Phys. Lett. 304:84–90
(1999).
45. Charych, D. H.; Nagy, J. O.; Spevak, W.; and Bednarski, M. D. Direct colo-
rimetric detection of receptor-ligand interaction by a polymerized bilayer
assembly. Science 261:585–588 (1993).
46. Reichert, A.; Nagy, J. O.; Spevak, W.; and Charych, D. Polydiacetylene lipo-
somes functionalized with sialic acid bind and colorimetrically detect influ-
enza virus. J. Am. Chem. Soc. 117:829–830 (1995).
47. Charych, D.; Cheng, Q.; Reichert, A.; Kuziemko, G.; Stroh, M.; Nagy, J. O.;
Spevak, W., et al. A litmus test for molecular recognition using artificial mem-
branes. Chem. Biol. 3:113–120 (1996).
48. Pan, J. J.; and Charych, D. Molecular recognition and colorimetric detection of
cholera toxin by poly(diacetylene) liposomes incorporating G ganglioside.
m1
Langmuir 13:1365–1367 (1997).
49. Okada, S. Y.; Jelinek, R.; and Charych, D. Induced color change of conjugated
polymeric vesicles by interfacial catalysis of phospholipase A . Angew. Chem.
2
Int. Ed. 38:655–659 (1999).
50. Chen, L.; McBranch, D. W.; Wang, H-L.; Helgeson, R.; Wudl, F.; and Whitten,
D. G. Highly sensitive biological and chemical sensors based on reversible
fluorescence quenching in a conjugated polymer. Proc. Natl. Acad. Sci. USA
96:12287–12292 (1999).
51. Gaylord, B. S.; Heeger, A. J.; and Bazan, G. C. DNA detection using water-soluble
conjugated polymers and peptide nucleic acid probes. Proc. Natl. Acad. Sci. USA
99:10954–10957 (2002).
52. Ho, H-A.; Bera-Aberem, M.; and Leclerc, M. Optical sensors based on hybrid
DNA/conjugated polymer complexes. Chem. Eur. J. 11:1718–1724 (2005).
53. Nilsson, K. P. R.; and Inganäs, O. Chip and solution detection of DNA hybrid-
ization using a luminescent zwitterionic polythiophene derivative. Nature
Mater. 2:419–424 (2003).
54. Zhou, Q.; and Swager, T. M. Methodology for enhancing the sensitivity of
fluorescent chemosensors––Energy migration in conjugated polymers. J. Am.
Chem. Soc. 117:7017–7018 (1995).
55. Zhou, Q.; and Swager, T. M. Fluorescent chemosensors based on energy
migration in conjugated polymers: The molecular wire approach to increased
sensitivity. J. Am. Chem. Soc. 117:12593–12602 (1995).
56. Swager, T. M. The molecular wire approach to sensory signal amplification.
Acc. Chem. Res. 31:201–207 (1998).
57. McQuade, D. T.; Pullen, A. E.; and Swager, T. M. Conjugated polymer-based
chemical sensors. Chem. Rev. 100:2537–2574 (2000).
58. Wang, J.; Wang, D.; Miller, E. K.; Moses, D.; Bazan, G. C.; and Heeger, A. J.
Photoluminescence of water-soluble conjugated polymers: Origin of enhanced
quenching by charge transfer. Macromolecules 33:5153–5158 (2000).
59. Wosnick, J. H.; and Swager, T. M. Molecular photonics and electronic cir-
cuitry for ultra-sensitive chemical sensors. Curr. Opin. Chem. Biol. 4:715–720
(2000).
60. Harrison, B. S.; Ramey, M. B.; Reynolds, J. R.; and Schanze, K. S. Amplified
fluorescence quenching in a poly(p-phenylene)-based cationic polyelectrolyte.
J. Am. Chem. Soc. 122:8561–8562 (2000).