Page 428 - Organic Electronics in Sensors and Biotechnology
P. 428

Electrochemical Surface Switches and Electronic Ion Pumps Based on Conjugated Polymers   405


          References
                 1.  Recknor, Jennifer B.; Recknor, Justin C.; Sakaguchi, Donald S.; and Mallapragada,
                  Surya K., Oriented astroglial cell growth on micropatterned polystyrene sub-
                  strates, Biomater. 25(14):2753 (2004); Stevens, Molly M.; and George, Julian H.,
                  Exploring and engineering the cell surface interface, Science 310(5751):1135
                  (2005); Tengvall, Pentti; Lundstrom, Ingemar; and Liedberg, Bo, Protein adsorp-
                  tion studies on model organic surfaces: An ellipsometric and infrared spectro-
                  scopic approach, Biomater. 19(4–5):407 (1998); Jia-Wei, Shen; Tao, Wu; Qi, Wang;
                  and Hai-Hua, Pan, Molecular simulation of protein adsorption and desorption
                  on hydroxyapatite surfaces, Biomater. 29(5):513 (2008).
                 2.  Smela, Elisabeth, Conjugated polymer actuators for biomedical applications,
                  Adv. Mater. 15(6):481 (2003); Jager, Edwin W. H.; Inganas, Olle; and Lundstrom,
                  Ingemar, Microrobots for micrometer-size objects in aqueous media: Potential
                  tools for single-cell manipulation, Science 288(5475):2335 (2000).
                 3.  Argun, Avni A., et al., Multicolored electrochromism in polymers: Structures
                  and devices. Chem. Mater. 16(23):4401 (2004).
                 4.  Thackeray, James W.; White, Henry S.; and Wrighton., Mark S., Poly(3-methyl-
                  thiophene)-coated electrodes: Optical and electrical properties as a function
                  of redox potential and amplification of electrical and chemical signals using
                  poly(3-methylthiophene)-based microelectrochemical transistors, J. Phys. Chem.
                  89:5133 (1985); Bernards, D. A., and Malliaras, G. G., Steady-state and transient
                  behavior of organic electrochemical transistors. Adv. Funct. Mater. 17(17):3538
                  (2007).
                 5.  Nilsson, David, et al., Bi-stable and dynamic current modulation in electro-
                  chemical organic transistors, Adv. Mater. 14(1 Jan. 4):51 (2002).
                 6.  Causley, Jennifer, et al., Electrochemically-induced fluid movement using poly-
                  pyrrole, Synth. Met. 151(1):60 (2005).
                 7.  Sun, Taolei, et al., Reversible switching between superhydrophilicity and super-
                  hydrophobicity, Angewandte Chem. –– Int. Ed. 43(3):357 (2004).
                 8.  Isaksson, J.; Robinson, L.; Robinson, N. D.; and Berggren, M., Electrochemical
                  control of surface wettability of poly(3-alkylthiophenes), Surf. Sci. 600(11):148
                  (2006).
                 9.  Bao, Zhenan; Dodabalapur, Ananth; and Lovinger, Andrew J., Soluble and pro-
                  cessable regioregular poly(3-hexylthiophene) for thin film field-effect transistor
                  applications with high mobility, Appl. Phys. Lett. 69(26):4108 (1996).
               10.  Isaksson, Joakim, et al., A solid-state organic electronic wettability switch, Adv.
                  Mater. 16(4):316 (2004).
               11.  Feng, X., and Jiang, L., Design and creation of superwetting/antiwetting sur-
                  faces, Adv. Mater. 18:3063 (2006).
               12.  Nadkarni, Suvid; Yoo, Byungwook; Basu, Debarshi; and Dodabalapur, Ananth,
                  Actuation of water droplets driven by an organic transistor based inverter,
                  Appl. Phys. Lett. 89(18):184105 (2006); Idota, Naokazu, et al., Microfluidic valves
                  comprising nanolayered thermoresponsive polymer-grafted capillaries, Adv.
                  Mater. 17(22):2723 (2005).
               13.  Robinson, L., et al., Electrochemical wettability switches gate aqueous liquids
                  in microfluidic systems, Lab on a Chip 6(10):1277 (2006).
               14. Yoshida, Mutsumi; Langer, Robert; Lendlein, Andreas; and Lahann, Joerg,
                  From advanced biomedical coatings to multi-functionalized biomaterials,
                  Polymer Rev. 46(4):347 (2006).
               15.  Wong, Joyce Y.; Langer, Robert; and Ingber, Donald E., Electronically conduct-
                  ing polymers can noninvasively control the shape and growth of mammalian
                  cells, Proc. Natl. Acad. of Sci. 91:3201 (1994).
               16.  Groenendaal, L., et al., Poly(3,4-ethylenedioxythiophene) and its derivatives:
                  Past, present, and future, Adv. Mater. 12(7):481 (2000).
               17.  Wang, X. Z.; Shapiro, B.; and Smela, E., Visualizing ion currents in conjugated
                  polymers, Adv. Mater. 16(18):1605 (2004).
                                                2+
               18.  Isaksson, J.,  et al., Electronic control of Ca  signalling in neuronal cells using
                  an organic electronic ion pump, Nature Mater. 6(9):673 (2007).
   423   424   425   426   427   428   429   430   431   432   433