Page 106 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 106

3.10 Time dependence of the expectation value         97

                                                                  È
                        parameter, so that the time-independent Schrodinger equation (3.58) may be
                        written as
                                                ^
                                                H(ë)ø n (ë) ˆ E n (ë)ø n (ë)              (3:66)
                                               ^
                        The expectation value of H(ë) is, then
                                                              ^
                                              E n (ë) ˆhø n (ë)jH(ë)jø n (ë)i             (3:67)
                        where we assume that ø n (ë) is normalized
                                                   hø n (ë)jø n (ë)iˆ 1                   (3:68)
                          To obtain the Hellmann±Feynman theorem, we differentiate equation (3.67)
                        with respect to ë
                                  *                     +

                        d                  d  ^

                        dë  E n (ë) ˆ ø n (ë)     dë  H(ë) ø n (ë)

                                     *                    +    *                    +

                                       d                                     d
                                                                        ^
                                                 ^

                                   ‡     ø n (ë) H(ë) ø n (ë)  ‡  ø n (ë) H(ë)    ø n (ë)  (3:69)
                                       dë                                     dë
                                                         ^
                        Applying the hermitian property of H(ë) to the third integral on the right-hand
                        side of equation (3.69) and then applying (3.66) to the second and third terms,
                        we obtain
                                      *                    +

                            d                  d
                                                 ^
                              E n (ë) ˆ ø n (ë)     H(ë) ø n (ë)

                           dë                   dë
                                              " *              +   *               +#

                                                 d                          d
                                      ‡ E n (ë)    ø n (ë) ø n (ë)  ‡  ø n (ë)    ø n (ë)  (3:70)

                                                 dë                          dë
                        The derivative of equation (3.68) with respect to ë is
                                      *               +    *               +

                                         d                          d

                                        dë  ø n (ë) ø n (ë)  ‡  ø n (ë)     dë  ø n (ë)  ˆ 0

                        showing that the last term on the right-hand side of (3.70) vanishes. We thereby
                        obtain the Hellmann±Feynman theorem
                                                     *                     +

                                           d                  d
                                                                ^

                                             E n (ë) ˆ  ø n (ë)    H(ë) ø n (ë)           (3:71)
                                          dë                   dë
                                     3.10 Time dependence of the expectation value
                        The expectation value hAi of the dynamical quantity or observable A is, in
                        general, a function of the time t. To determine how hAi changes with time, we
                        take the time derivative of equation (3.46)
   101   102   103   104   105   106   107   108   109   110   111