Page 107 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 107

98                   General principles of quantum theory
                                                     *          +    *          +    *          +
                                                                                            ^
                                dhAi    d     ^        @Ø                    @Ø            @A
                                                            A Ø
                                                                           ^
                                     ˆ    hØjAjØiˆ           ^     ‡   Ø A         ‡   Ø       Ø
                                 dt    dt              @t                     @t            @t
                             Equation (3.55) may be substituted for the time derivatives of the wave function
                             to give
                                                                             *          +

                                        dhAi    i  ^   ^       i    ^^             @A ^
                                             ˆ hHØjAjØiÿ hØjAHjØi‡             Ø       Ø
                                         dt     "             "                     @t
                                                                             *          +

                                                i              i                   @A ^
                                                                    ^^
                                                     ^ ^
                                             ˆ hØjHAjØiÿ hØjAHjØi‡             Ø       Ø
                                                "             "                     @t
                                                                 *          +

                                                i                      @A ^
                                                         ^
                                                      ^
                                             ˆ hØj[H, A]jØi‡       Ø       Ø
                                                "                       @t

                                                i             @A ^
                                                   ^
                                                       ^
                                             ˆ h[H, A]i‡
                                                "             @t
                                                     ^
                             where the hermiticity of H and the de®nition (equation (3.3)) of the commu-
                                                               ^
                             tator have been used. If the operator A is not an explicit function of time, then
                             the last term on the right-hand side vanishes and we have
                                                        dhAi    i  ^   ^
                                                             ˆ h[H, A]i                        (3:72)
                                                          dt    "
                                        ^
                                                                               ^
                                                                           ^
                               If we set A equal to unity, then the commutator [H, A] vanishes and equation
                             (3.72) becomes
                                                             dhAi
                                                                  ˆ 0
                                                              dt
                             or
                                                    d             d
                                                          ^
                                                      hØjAjØiˆ      hØjØiˆ 0
                                                    dt           dt
                             We thereby obtain the result in Section 2.2 that if Ø is normalized, it remains
                             normalized as time progresses.
                                               ^
                                                                                   ^
                               If the operator A in equation (3.72) is set equal to H, then again the
                             commutator vanishes and we have
                                                      dhAi   dhHi    dE
                                                           ˆ       ˆ    ˆ 0
                                                       dt      dt    dt
                             Thus, the energy E of the system, which is equal to the expectation value of the
                             Hamiltonian, is conserved if the Hamiltonian does not depend explicitly on
                             time.
                                                       ^
                               By setting the operator A in equation (3.72) equal ®rst to the position
                             variable x, then the variable y, and ®nally the variable z, we can show that
   102   103   104   105   106   107   108   109   110   111   112