Page 110 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 110

3.11 Heisenberg uncertainty principle             101
                           ^          ^              2  ^          ^
                         h(A ÿhAi)Øj(A ÿhAi)Øi‡ ë h(B ÿhBi)Øj(B ÿhBi)Øi
                                                                                ^
                                       ^
                                                                    ^
                                                   ^
                                 ‡ iëh(A ÿhAi)Øj(B ÿhBi)Øiÿ iëh(B ÿhBi)Øj(A ÿhAi)Øi > 0
                                ^
                                      ^
                        or, since A and B are hermitian
                              ^       2       2    ^       2
                         hØj(A ÿhAi) jØi‡ ë hØj(B ÿhBi) jØi
                                                                     ^
                                                                              ^
                                                             ‡ iëhØj[A ÿhAi, B ÿhBi]jØi > 0
                        Applying equations (3.75) and (3.78), we have
                                                       2
                                                             2
                                                  2
                                              (ÄA) ‡ ë (ÄB) ÿ ëhCi > 0
                        If we complete the square of the terms involving ë, we obtain
                                                                   2      2
                                                            hCi       hCi
                                                    2
                                           2
                                       (ÄA) ‡ (ÄB)    ë ÿ          ÿ         > 0
                                                          2(ÄB) 2    4(ÄB) 2
                        Since ë is arbitrary, we select its value so as to eliminate the second term
                                                            hCi
                                                      ë ˆ                                 (3:80)
                                                          2(ÄB) 2
                        thereby giving
                                                      2     2   1   2
                                                  (ÄA) (ÄB) > hCi
                                                                4
                        or, upon taking the positive square root,
                                                             1
                                                    ÄAÄB > jhCij
                                                             2
                        Substituting equation (3.77) into this result yields
                                                            1  ^ ^
                                                  ÄAÄB > jh[A, B]ij                       (3:81)
                                                            2
                        This general expression relates the uncertainties in the simultaneous measure-
                                                                                              ^
                                                                                        ^
                        ments of A and B to the commutator of the corresponding operators A and B
                        and is a general statement of the Heisenberg uncertainty principle.
                        Position±momentum uncertainty principle
                                                                                   ^
                        We now consider the special case for which A is the variable x (A ˆ x) and B
                                                                           ^ ^
                                            ^
                        is the momentum p x (B ˆÿi" d=dx). The commutator [A, B] may be evaluated
                        by letting it operate on Ø

                                                           dØ    dxØ
                                           ^ ^
                                          [A, B]Ø ˆÿi" x      ÿ        ˆ i"Ø
                                                           dx     dx
                                 ^ ^
                        so that jh[A, B]ij ˆ " and equation (3.81) gives
                                                                "
                                                      ÄxÄp x >                            (3:82)
                                                                2
                          The Heisenberg position±momentum uncertainty principle (3.82) agrees
                        with equation (2.26), which was derived by a different, but mathematically
   105   106   107   108   109   110   111   112   113   114   115