Page 114 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 114

Problems                              105

                            (a) Calculate hAi.
                            (b) Express the normalized wave function ö of the system in terms of the
                                            ^
                            eigenfunctions of A.
                        3.17 The wave function Ø(x) for a particle in a one-dimensional box of length a is
                                                           ðx
                                             Ø(x) ˆ C sin 7   ;  0 < x < a
                                                           a
                            where C is a constant. What are the possible observed values for the energy and
                            their respective probabilities?
                                                     ^
                        3.18 If jøi is an eigenfunction of H with eigenvalue E, show that for any operator A ^
                                                     ^
                                                 ^
                            the expectation value of [H, A] vanishes, i.e.,
                                                        ^
                                                           ^
                                                    høj[H, A]jøiˆ 0
                        3.19 Derive both of the Ehrenfest theorems using equation (3.72).
                        3.20 Show that
                                                             "
                                                    ÄHÄx >     h^ p x i
                                                            2m
   109   110   111   112   113   114   115   116   117   118   119