Page 195 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 195

186                          The hydrogen atom

                             For k ˆ 0, equation (6.70) gives
                                                                     Z
                                                            ÿ1
                                                          hr i nl ˆ                            (6:71)
                                                                     2
                                                                    n a 0
                             For k ˆ 1, equation (6.70) gives
                                               2        3a 0          a 2 0  ÿ1
                                                 hri nl ÿ   ‡ l(l ‡ 1)  hr i nl ˆ 0
                                               n 2       Z            Z 2
                             or
                                                            a 0   2
                                                    hri nl ˆ   [3n ÿ l(l ‡ 1)]                 (6:72)
                                                            2Z
                             For k ˆ 2, equation (6.70) gives
                                             3   2     5a 0                    a 2
                                                                             3
                                               hr i nl ÿ  hri nl ‡ 2[l(l ‡ 1) ÿ ]  0  ˆ 0
                                            n 2         Z                    4  Z 2
                             or
                                                          2 2
                                                         n a
                                                   2        0    2
                                                 hr i nl ˆ    [5n ÿ 3l(l ‡ 1) ‡ 1]             (6:73)
                                                         2Z 2
                                                                                4
                                                                          3
                             For higher values of k, equation (6.70) leads to hr i nl , hr i nl , ...
                                                                  ÿ3       ÿ2
                               For k ˆÿ1, equation (6.70) relates hr i nl to hr i nl
                                                                  Z
                                                      ÿ3                 ÿ2
                                                    hr i nl ˆ          hr i nl                 (6:74)
                                                              l(l ‡ 1)a 0
                                                                                     ÿ4
                                                                                            ÿ5
                             For k ˆÿ2, ÿ3, ... , equation (6.70) gives successively hr i nl , hr i nl , ...
                                                   ÿ2
                             expressed in terms of hr i nl .
                                                               ÿ2
                               Although the expectation value hr i nl cannot be obtained from equation
                             (6.70), it can be evaluated by regarding the azimuthal quantum number l as the
                             parameter in the Hellmann±Feynman theorem (equation (3.71)). Thus, we
                             have

                                                                    ^
                                                          @E n    @ H l
                                                              ˆ                                (6:75)
                                                           @l      @l
                                                           ^
                             where the Hamiltonian operator H l is given by equation (6.18) and the energy
                                                                       ^
                             levels E n by equation (6.57). The derivative @ H l =@l is just
                                                         ^       2
                                                       @ H l   "
                                                            ˆ      (2l ‡ 1)                    (6:76)
                                                        @l    2ìr 2
                             In the derivation of (6.57), the quantum number n is shown to be the value of l
                             plus a positive integer. Accordingly, we have @n=@l ˆ 1 and
                                                               2
                                                                                 2 2
                                               2
                                                                  2
                                                 2
                                             Z e9 @           Z e9 @n @         Z "
                                    @E n              ÿ2                  ÿ2          ÿ3
                                        ˆÿ           n   ˆÿ              n   ˆ       n         (6:77)
                                     @l       2a 0 @l          2a 0 @l @n       ìa 2
                                                                                   0
                                                                                    2
                                               2
                                          2
                                                                              2
                             where a ì ˆ " =ìe9 has been replaced by a 0 ˆ " =m e e9 . Substitution of
                             equations (6.76) and (6.77) into (6.75) gives the desired result
   190   191   192   193   194   195   196   197   198   199   200