Page 53 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 53

44                       Schro Èdinger wave mechanics

                                         dhxi   d  … 1         2      …  1  @        2
                                             ˆ        xjØ(x, t)j dx ˆ     x  jØ(x, t)j dx
                                          dt    dt                         @t
                                                   ÿ1                  ÿ1

                                                   …
                                                i"  1    @        @Ø     @Ø
                                             ˆ         x     Ø      ÿ Ø        dx
                                                2m      @x       @x       @x
                                                    ÿ1
                             where equation (2.12) has been used. Integration by parts of the last integral
                             gives
                                                               1       …
                                dhxi    i"        @Ø     @Ø         i"  1        @Ø     @Ø
                                     ˆ     x Ø      ÿ Ø          ÿ          Ø       ÿ Ø        dx
                                 dt    2m        @x       @x   ÿ1 2m    ÿ1       @x       @x
                             The integrated part vanishes because Ø(x, t) goes to zero as x approaches ( )
                             in®nity. Another integration by parts of the last term on the right-hand side
                             yields

                                                            …
                                                   dhxi   1  1       " @
                                                       ˆ        Ø         Ø dx
                                                    dt    m          i @x
                                                             ÿ1
                             According to equation (2.18), the integral on the right-hand side of this
                             equation is the expectation value of the momentum, so that we have
                                                                   dhxi
                                                           hpiˆ m                              (2:23)
                                                                    dt
                             Equation (2.23) is the quantum-mechanical analog of the classical de®nition of
                             momentum, p ˆ mv ˆ m(dx=dt). This derivation also shows that the associa-
                             tion in quantum mechanics of the operator ("=i)(@=@x) with the momentum is
                             consistent with the correspondence principle.
                               The second relationship is obtained from the time derivative of the expecta-
                             tion value of the momentum hpi in equation (2.18),

                                            …                   …
                                   dhpi    d  1     " @Ø       "  1   @Ø @Ø           @ @Ø
                                        ˆ       Ø         dx ˆ                 ‡ Ø           dx
                                    dt    dt        i @x       i       @t @x         @x @t
                                              ÿ1                  ÿ1

                             We next substitute equations (2.11) for the time derivatives of Ø and Ø and
                             obtain
                                           "                                                  #

                                       … 1       2  2                            2  2
                               dhpi           ÿ" @ Ø             @Ø         @  " @ Ø
                                    ˆ                   ‡ VØ         ‡ Ø               ÿ VØ     dx
                                 dt           2m @x  2           @x       @x 2m @x   2
                                        ÿ1
                                                                          3
                                                 2
                                       ÿ" 2  … 1  @ Ø @Ø      " 2  … 1   @ Ø       … 1      dV

                                    ˆ                    dx ‡        Ø        dx ÿ     Ø Ø      dx
                                       2m       @x 2  @x      2m         @x 3                dx
                                            ÿ1                    ÿ1                ÿ1
                                                                                               (2:24)
                             where the terms in V cancel. The ®rst integral on the right-hand side of
                             equation (2.24) may be integrated by parts twice to give
   48   49   50   51   52   53   54   55   56   57   58