Page 54 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 54

2.3 Expectation values of dynamical quantities        45

                                   2
                             …                             1    …
                                                                           2
                              1   @ Ø @Ø          @Ø @Ø           1  @Ø @ Ø
                                           dx ˆ               ÿ                dx
                                   @x 2  @x        @x @x              @x @x  2
                              ÿ1                           ÿ1     ÿ1
                                                                      1    …
                                                                                    3

                                                                  2
                                                  @Ø @Ø         @ Ø         1     @ Ø
                                              ˆ           ÿ Ø            ‡     Ø       dx
                                                   @x @x         @x 2  ÿ1   ÿ1     @x 3
                        The integrated part vanishes because Ø and @Ø=@x vanish at ( ) in®nity. The
                        remaining integral cancels the second integral on the right-hand side of
                        equation (2.24), leaving the ®nal result

                                                dhpi       dV
                                                     ˆÿ          ˆhFi                     (2:25)
                                                 dt         dx
                        where equation (2.1) has been used. Equation (2.25) is the quantum analog of
                        Newton's second law of motion, F ˆ ma, and is in agreement with the
                        correspondence principle.



                        Heisenberg uncertainty principle
                        Using expectation values, we can derive the Heisenberg uncertainty principle
                        introduced in Section 1.5. If we de®ne the uncertainties Äx and Äp as the
                        standard deviations of x and p, as used in statistics, then we have

                                                                 2 1=2
                                                  Äx ˆh(x ÿhxi) i
                                                                 2 1=2
                                                 Äp ˆh(p ÿhpi) i
                        The expectation values of x and of p at a time t are given by equations (2.13)
                        and (2.18), respectively. For the sake of simplicity in this derivation, we select
                        the origins of the position and momentum coordinates at time t to be the
                        centers of the wave packet and its Fourier transform, so that hxiˆ 0 and
                        hpiˆ 0. The squares of the uncertainties Äx and Äp are then given by
                                …
                                 1
                            2        2
                        (Äx) ˆ      x Ø Ø dx
                                 ÿ1
                                                       "             # 1
                                                                                2
                                     2
                                   …                         2                …
                                              2
                                  "    1     @ Ø          "      @Ø          "    1  @Ø @Ø
                            2
                        (Äp) ˆ           Ø        dx ˆ        Ø          ÿ                    dx
                                  i          @x 2         i       @x         i        @x @x
                                      ÿ1                                          ÿ1
                                                                      ÿ1

                                …
                                 1    ÿ" @Ø      " @Ø
                              ˆ                         dx
                                       i  @x     i @x
                                 ÿ1
                                                         2
                        where the integrated term for (Äp) vanishes because Ø goes to zero as x
                        approaches ( ) in®nity.
                                             2
                          The product (ÄxÄp) is
   49   50   51   52   53   54   55   56   57   58   59