Page 8 -
P. 8

xi i    Contents

              2.4    Principal Components ............................................................... 39
              2.5    Feature Assessment .................................................................. 41
                    2.5.1   Graphic Inspection  ........................................................  42
                    2.5.2   Distribution Model Assessment  .....................................  43
                    2.5.3   Statistical Inference Tests .............................................  44
              2.6   The Dimensionality Ratio Problem  .............................................  46
              Bibliography  ............................................................................................  49
              Exercises  ................................................................................................  49



            3  Data Clustering .................................................................................. 53

              3.1    Unsupervised Classification ....................................................... 53
              3.2    The Standardization Issue  ...................................................... 55
              3.3    Tree Clustering ........................................................................... 58
                     3.3.1   Linkage Rules  ................................................................
                                                                             60
                     3.3.2   Tree Clustering Experiments  .........................................  63
              3.4    Dimensional Reduction  ..............................................................
                                                                             65
                                                                             70
              3.5    K-Means Clustering  ....................................................................
              3.6    Cluster Validation ....................................................................... 73
              Bibliography  ............................................................................................ 76
              Exercises ................................................................................................ 77



            4   Statistical Classification .................................................................... 79

                     Linear Discriminants ................................................................... 79
                     4.1  . 1   Minimum Distance Classifier ........................................ 79
                     4.1 . 2   Euclidian Linear Discriminants ...................................... 82
                     4.1  .  3   Mahalanobis Linear Discriminants  ................................  85
                     4.1.4   Fisher's Linear Discriminant  ..........................................  88
                     Bayesian Classification  ..............................................................  90
                     4.2.1   Bayes Rule for Minimum Risk  .......................................  90
                     4.2.2   Normal Bayesian Classification  ..................................... 97
                                                                            103
                     4.2.3   Reject Region  ..............................................................
                     4.2.4   Dimensionality Ratio and Error Estimation  ..................  105
                     Model-Free Techniques ........................................................... 108
                     4.3.1   The Parzen Window Method  .......................................  110
                     4.3.2   The K-Nearest Neighbours Method  ............................  113
                     4.3.3   The ROC Curve  ...........................................................  116
                                                                            121
                     Feature Selection  .....................................................................
                                                                            126
                     Classifier Evaluation  .................................................................
                     Tree Classifiers  ........................................................................
                                                                            130
                     4.6.1   Decision Trees and Tables  ..........................................  130
                     4.6.2   Automatic Generation of Tree Classifiers  ................... 136
   3   4   5   6   7   8   9   10   11   12   13