Page 9 -
P. 9

...
                                                            Contents   X~II

         4.7   Statistical Classifiers in Data Mining  ........................................  138
                                                                      140
         Bibliography  ..........................................................................................
                                                                      142
         Exercises  ..............................................................................................

       5  Neural Networks  ...............................................................................  147

               LMS Adjusted Discriminants  ....................................................  147
               Activation Functions  .................................................................  155
               The Perceptron Concept .......................................................... 159
                Neural Network Types  ..............................................................  167
                Multi-Layer Perceptrons  ...........................................................  171
               5.5.1  The Back-Propagation Algorithm  ................................  172
               5.5.2   Practical aspects .........................................................  175
                5.5.3   Time Series  ...............................................................  181
                Performance of Neural Networks  .............................................  184
                5.6.1   Error Measures  ............................................................  184
                5.6.2   The Hessian Matrix  .....................................................  186
                5.6.3   Bias and Variance in NN Design  ................................. 189
                5.6.4   Network Complexity  ....................................................  192
                5.6.5   Risk Minimization  ........................................................ 199
                Approximation Methods in NN Training  ...................................  201
                5.7.1   The Conjugate-Gradient Method  .................................  202
                5.7.2   The Levenberg-Marquardt Method ............................. 205
                Genetic Algorithms in NN Training  ...........................................  207
                Radial Basis Functions  .............................................................  212
                Support Vector Machines  .........................................................  215
                Kohonen Networks ................................................................... 223
                Hopfield Networks  .............................................................. 226
                Modular Neural Networks  .........................................................
                                                                       231
                                                                       235
                Neural Networks in Data Mining  ...............................................
          Bibliography  .......................................................................................... 237
          Exercises  .............................................................................................. 239


        6  Structural Pattern Recognition  .......................................................
                                                                       243
          6.1   Pattern Primitives  .....................................................................  243
                6.1 . 1  Signal Primitives  ..........................................................  243
                   .
                                                                       245
                6.1 2   Image Primitives  ..........................................................
          6.2   Structural Representations ....................................................... 247
                6.2.1   Strings  .........................................................................  247
                6.2.2   Graphs  ......................................................................... 248
                                                                       249
                6.2.3  Trees  ...........................................................................
          6.3   Syntactic Analysis  ...................................................................  250
   4   5   6   7   8   9   10   11   12   13   14