Page 122 - Phase Space Optics Fundamentals and Applications
P. 122
Rotations in Phase Space 103
22. K. B. Wolf, Geometric Optics in Phase Space, Springer, New York, 2004.
23. T. Alieva and M. J. Bastiaans, “Alternative representation of the linear canonical
integral transform,” Opt. Lett. 30: 3302–3304 (2005).
24. R. Simon, K. Sundar, and N. Mukunda, “Twisted Gaussian Schell-model beams.
I. Symmetry structure and normal-mode spectrum,” J. Opt. Soc. Am. A 10: 2008–
2016 (1993).
25. R. Simon and G. S. Agarwal, “Wigner representation of Laguerre-Gaussian
beams,” Opt. Lett. 25: 1313–1315 (2000).
26. R. Simon and N. Mukunda, “Optical phase space, Wigner representation, and
invariant quality parameters,” J. Opt. Soc. Am. A 17: 2440–2463 (2000).
27. T. Alieva and M. J. Bastiaans, “Dynamic and geometric phase accumulation by
Gaussian-type modes in first-order optical systems,” Opt. Lett. 33: 1659–1661
(2008).
28. A. Lohmann, “Image rotation, Wigner rotation, and the fractional order Fourier
transform,” J. Opt. Soc. Am. A 10: 2181–2186 (1993).
29. T. Alieva, V. Lopez, F. Agullo-Lopez, and L. B. Almeida, “The fractional Fourier
transform in optical propagation problems,” J. Mod. Opt. 41: 1037–1044 (1994).
30. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Gyrator transform: Properties and
applications,” Opt. Express 15: 2190–2203 (2007).
31. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Experimental implementation of the
gyrator transform,” J. Opt. Soc. Am. A 24: 3135–3139 (2007).
32. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Applications of gyrator transform
for image processing,” Opt. Comm. 278: 279–284 (2007).
33. J. A. Rodrigo, “First-Order Optical Systems in Information Processing and Op-
tronic Devices,” Ph.D. thesis, Universidad Complutense de Madrid, Spain,
2008.
34. H.-Y. Fan and H.-L. Lu, “Eigenmodes of fractional Hankel transform derived
by the entangled-state method,” Opt. Lett. 28: 680–683 (2003).
35. E. G. Abramochkin and V. G. Volostnikov, “Generalized Gaussian beams,”
J. Opt. A.: Pure Appl. Opt. 6: S157–S161 (2004).
36. M. J. Bastiaans and T. Alieva, “First-order optical systems with unimodular
eigenvalues,” J. Opt. Soc. Am. A 23: 1875–1883 (2006).
37. M. J. Bastiaans and T. Alieva, “Classification of lossless first-order optical sys-
tems and the linear canonical transformation,” J. Opt. Soc. Am. A 24: 1053–1062
(2007).
38. T. Alieva, “Fractional Fourier transform as a tool for investigation of fractal
objects,” J. Opt. Soc. Am. A 13: 1189–1192 (1996).
39. T. Alieva and M. J. Bastiaans, “Mode mapping in paraxial lossless optics,” Opt.
Lett. 30: 1461–1463 (2005).
40. A. W¨unsche, “General Hermite and Laguerre two-dimensional polynomials,”
J. Phys. A: Math. Gen. 33: 1603–1629 (2000).
41. T. Alieva M. J. Bastiaans, “Orthonormal mode sets for the two-dimensional
fractional Fourier transformation,” Opt. Lett. 32: 1226–1228 (2007).
42. M. J. Bastiaans and T. Alieva, “Propagation law for the generating function of
Hermite-Gaussian-type modes in first-order optical systems,” Opt. Express 13:
1107–1112 (2005).
43. M. J. Padgett and J. Courtial, “Poincar´e-sphere equivalent for light beams con-
taining orbital angular momentum,” Opt. Lett. 24: 430–432 (1999).
44. G. F. Calvo, “Wigner representation and geometric transformations of optical
orbital angular momentum spatial modes,” Opt. Lett. 30: 1207–1209 (2005).
45. G. S. Agarwal, “SU(2) structure of the Poincar´e sphere for light beams with
orbital angular momentum,” Opt. Lett. 16: 2914–2916 (1999).
46. D. Mendlovic, Y. Bitran, R. G. Dorsh, C. Ferreira, J. Garc´ıa, and H. M. Oza-
ktaz, “Anamorphic fractional Fourier transform: Optical implementation and
applications,” Appl. Opt. 34: 7451–7456 (1995).
47. J. Garc´ıa, R. G. Dorsch, A. W. Lohmann, C. Ferreira, and Z. Zalevsky, “Flexible
optical implementation of fractional Fourier transform processors, applications
to correlation and filtering,” Opt. Comm. 133: 393–400 (1997).