Page 123 - Phase Space Optics Fundamentals and Applications
P. 123
104 Chapter Three
48. M.F.Erden,H.M.Ozaktaz,A.Sahin,andD.Mendlovic,“Designofdynamically
adjustible anamorphic fractional Fourier transformer,” Opt. Comm. 136: 52–60
(1997).
49. A. Sahin, H. M. Ozaktaz, and D. Mendlovic, “Optical implementations of two-
dimensional fracional Fourier transforms and linear canonical transforms with
arbitrary parameters,” Appl. Opt. 37: 2130–2141 (1998).
50. I. Moreno, J. A. Davis, and K. Crabtree, “Fractional Fourier transform optical
system with programmable diffractive lenses,” Appl. Opt. 42: 6544–6548 (2003).
51. A. A. Malutin, “Tunable Fourier transformer of fractional order,” Quant. Elect.
36: 79–83 (2006).
52. B. Macukow and H. H. Arsenault, “Matrix decompositions for nonsymmetrical
optical systems,” J. Opt. Soc. Am. 73: 1360–1366 (1983).
53. G. Nemes and A. E. Siegman, “Measurements of all ten second-order moments
of an astigmatic beam by the use of rotating simple astigmatic (anamorphic)
optics,” J. Opt. Soc. Am. A 11: 2257–2264 (1994).
54. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Optical system design for ortho-
symplectic transformations in phase space,” J. Opt. Soc. Am. A 23: 2494–2500
(2006).
55. H. Braunecker, O. Bryngdahl, and B. Schnell, “Optical system for image rotation
and magnification,” J. Opt. Soc. Am. 70: 137–141 (1980).
56. O. Akay and G. F. Boudreaux-Bartels, “Fractional convolution and correlation
via operator methods and an application to detection of linear FM signals,”
IEEE Trans. Signal Process. 49: 979–993 (2001).
57. T. Alieva and M. L. Calvo, “Importance of the phase and amplitude in the
fractional Fourier domain,” J. Opt. Soc. Am. A 20: 533–541 (2003).
58. J. C. Wood and D. T. Berry, “Tomographic time-frecuency analysis and its ap-
plication toward time-varying filtering and adaptive kernel design for multi-
component linear-FM signals,” IEEE Trans. Signal Process. 42: 2094-2104 (1994).
59. Y. N. Hsu and H. H. Arsenault, “Optical pattern recognition using circular
harmonic expansion,” Appl. Opt. 21: 4016–4019 (1982)
60. N. Towghi, B. Javidi, and Z. Luo, “Fully phase encrypted image processor,” J.
Opt. Soc. Am. A 16: 1915–1927 (1999).
61. J. Courtial and M. Padgett, “Performance of a cylindrical lens mode converter
for producing Laguerre-Gaussian laser modes,” Opt. Comm. 159: 13–18 (1999).
62. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman,
“Astigmatic laser mode converters and transfer of orbital angular momentum,”
Opt. Comm. 96: 123–132 (1993).
63. D. G. Grier, “A revolution in optical manipulation,” Nature 424: 810-816 (2003).
64. K. A. Nugent, D. Paganin, and T. E. Gureyev, “A phase odyssey,” Phys. Today
8: 27–32 (2001).
65. K. A. Nugent, “Wave field determination using 3-dimensional intensity infor-
mation,” Phys. Rev. Lett. 68: 2261–2264 (1992).
66. M.G.Raymer,M.Beck,andD.F.McAlister,“Complexwavefieldreconstruction
using phase space tomography,” Phys. Rev. Lett. 72: 1137–1140 (1994).
67. A. C´amara-Iglesias and T. Alieva, “Phase-space tomography for separable op-
tical fields,” in ICO-21 Congress Proceeding 2008, (2008), p.102.
68. R. Zambrini and S. M. Barnett, “Quasi-intristic angular momentum and the
measurements of its specrum,” Phys. Rev. Lett. 96: 113901–4 (2006).
69. G. F. Calvo, A. Picon, and R. Zambrini, “Measuring the complete transverse
spatial mode spectrum of a wave field,” Phys. Rev. Lett. 100: 173902–4 (2008).
70. M. J. Bastiaans, “Second-order moments of the Wigner distribution function in
first-order optical systems,” Optik 88: 163–168 (1991).
71. J. Serna, R. Mart´ınez-Herrero, and P. M. Mej´ıas, “Parametric characterization of
general partially coherent beams propagating through ABCD optical systems,”
J. Opt. Soc. Am. A 8: 1094–1098 (1991).
72. M. J. Bastiaans and T. Alieva, “Wigner distribution moments in fractional
Fourier transform systems,” J. Opt. Soc. Am. A 19: 1763–1773 (2002).