Page 124 - Phase Space Optics Fundamentals and Applications
P. 124
Rotations in Phase Space 105
73. T. Alieva and M. J. Bastiaans, “Invariants of second-order moments of optical
beams under phase-space rotations,” in ICO-21 Congress Proceeding 2008, (2008),
p. 103.
74. T. Alieva and M. J. Bastiaans, “Two-dimensional signal representation on the
angular Poincar´e sphere,” in Proc. Topical Meeting on Optoinformatics 2008, St.
Petersburg, Russia.
75. A. Ya. Bekshaev, “Intensity moments of a laser beam formed by superposition of
Hermite-Gaussian modes,” in Fotoelektronika 8: 22–25 (1999), Odessa University.
76. L. G. Gouy, “Sur une propri´et´e nouvelle des ondes lumineuses,” Compt. Rendue
Acad. Sci. (Paris) 110: 1251–1253 (1890).
77. M. F. Erden and H. M. Ozaktas, “Accumulated Gouy phase shift in Gaussian
beam propagation through first-order optical systems,” J. Opt. Soc. Am. A 14:
2190–2194 (1997).
78. R. Borghi, M. Santarsiero and R. Simon, “Shape invariance and a universal form
for the Gouy phase,” J. Opt. Soc. Am. A 21: 572–579 (2004).
79. S. J. van Enk, “Geometric phase, transformations of Gaussian light beams and
angular momentum transfer,” Opt. Comm. 102: 59–64 (1993).
80. E. J. Galvez, P. R. Crawford, H. I. Sztul, M. J. Pysher, P. J. Haglin, and R. E.
Williams,“Geometric phase associated with mode transformations of optical
beams bearing orbital angular momentum,” Phys. Rev. Lett. 90: 203901 (2003).
81. A. E. Siegman, Lasers, University Science Books, Sausalito, Calif., 1986.
82. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displace-
ment detection in optical tweezers,” Opt. Lett. 23: 7–9 (1998).
83. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-
dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89:
240401 (2002).
84. A. Ekert, M. Ericsson, P. Hayden, H. Inamori, J. A. Jones, D. K. L. Oi, and
V. Vedral, “Geometric quantum computation,” J. Mod. Opt. 47: 2501–2513 (2000).