Page 210 - Phase Space Optics Fundamentals and Applications
P. 210

Imaging Systems: Phase-Space Representations      191


                47. J. Ojeda-Castaneda, L. R. Berriel-Valdos, and E. Montes, “Bessel annular
                  apodizers: Imaging characteristics,” Appl. Opt. 26: 2770–2772 (1987).
                48. J. Ojeda-Castaneda, P. Andr´es, and A. D´ıaz, “Strehl ratio with low sensitivity
                  to spherical aberration,” J. Opt. Soc. Amer. A 5: 1233–1236 (1988).
                49. J. Ojeda-Castaneda, E. Tepichin, and A. Pons, “Apodization of annular aper-
                  tures: Strehl ratio,” Appl. Opt., 27: 5140–5145 (1988).
                50. J. Ojeda-Castaneda and C. M. G´omez-Sarabia, “Aberration balancing for shade
                  annular apertures,” Microwave & Opt. Technol. Lett. 1: 226–228 (1988).
                51. W. H. Steel, “Axicons with spherical surfaces,” in L‘Optique en m´ etrologie,P.
                  Mollet (ed.), Pergamon Press, New York, 1960, pp. 181–192.
                52. J. Ojeda-Castaneda and L. R. Berriel-Valdos, “Zone plate for arbitrarily high
                  focal depth,” Appl. Opt. 29: 994–997 (1990).
                53. N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: High res-
                  olution and long focal depth,” Opt. Lett. 16: 523–525 (1991).
                54. J. Sochacki, S. Bara, J. Jaroszewicz, and A. Kolodziejcyk, “Phase retardation of
                  the uniform-intensity axilens,” Opt. Lett. 17:7–9 (1992).
                55. J. Ojeda-Castaneda, M. Martinez-Corral, and P. Andr´es, ”Zero axial irradiance
                  by annular screens with angular variation,” Appl. Opt. 31: 4600–4602 (1992).
                56. J. Ojeda-Castaneda and G. Ramirez, ”Zone plates for zero axial irradiance,”
                  Opt. Lett. 18: pp. 87–89 (1993).
                57. A. W. Lohmann, J. Ojeda-Castaneda, and G. Ramirez, ”Zone plates encoding
                  lima¸conal variations”, Opt. Comm. 114: 30–36 (1995).
                58. I. Escobar, G. Saavedra, and M. Martinez-Corral, “Reduction of the spherical
                  aberration effect in high-numerical-aperture optical scanning instruments,” J.
                  Opt. Soc. Amer. A 23: 3150–3155 (2006).
                59. L. W. Alvarez, “Two-element variable-power spherical lens,” U.S. Patent
                  3,305,294, Dec. 3, 1964.
                60. A. W. Lohmann, “Lente focale variabile,” Italian Patent 727, 848, June 19, 1964.
                61. A. W. Lohmann, “Improvements relating to lenses and to variable optical lens
                  systems formed by such lenses,” Patent Specification 998, 191, Patent Office,
                  London, 1965.
                62. Adolf W. Lohmann, “A new class of varifocal lenses,” Appl. Opt. 9: 1669–1671
                  (1970).
                63. I. A. Palusinski, J. M. Sasi´an, and J. E. Greivenkamp, “Lateral shift variable
                  aberration generators,” Appl. Opt. 38: 86–90 (1999).
                64. N. L´opez-Gil, H. C. Howland, B. Howland, N. Charman, and R. Applegate,
                  “Generation of third-order spherical and coma aberrations by the use of radi-
                  ally symmetrical fourth-order lenses,” J. Opt. Soc. Amer. A 15: 2563–2571 (1998).
                65. M. Somayaji and M. P. Christensen, “Enhancing form factor and light collection
                  of multiplex imaging systems by using a cubic phase mask,” Appl. Opt. 45:
                  2911–2923 (2006).
   205   206   207   208   209   210   211   212   213   214   215