Page 221 - Phase Space Optics Fundamentals and Applications
P. 221

202   Chapter Six
















                            (a)                           (b)


               FIGURE 6.4 (a) Low-resolution USAF target; (b) super resolved
               reconstruction using time multiplexing.


               6.3.3 Polarization Multiplexing
               In this case we perform averaging over the time-varying polarization
               state, and thus Eq. (6.18) becomes


                                            x

                U R (  x ) =  U(  ) rect
                                x
                                          x


                                                  ∗


                        ×    G(  −   ,p( ,t),  ,t)G (−  x +   ,p( ,t),  ,t) dp
                                     x
                                 x
                                                          x


                                                   x
                        × d  d  =      U(  ) rect
                                          x
                               x
                            x
                                                    x


                                                  ∗


                        ×    G(  −   ,p( ,t),  ,t)G (−  x +   ,p( ,t),  ,t)
                                 x   x                    x

                            dp

                        ×       dt d  d    x
                                     x
                            dt
                                                                    (6.26)
               since

                                                                dp
                      G(  −   ,p( ,t),  ,t)G (−  x +   ,p( ,t),  ,t)  dt

                                          ∗


                                                  x
                             x
                         x
                                                                dt
                       ≈  (  x −   )

                                x
                                                                    (6.27)
               We obtain once again as the final expression for the reconstructed
               spectrum

                                     x



               U R (  x ) =  rect     d    x  U(  ) (  x −   ) d  =    x · U(  x )
                                               x
                                                        x
                                                            x
                                   x
                                                                    (6.28)
   216   217   218   219   220   221   222   223   224   225   226