Page 234 - Phase Space Optics Fundamentals and Applications
P. 234

Super Resolved Imaging in Wigner-Based Phase Space      215


               25. Z. Zalevsky, E. Leith, and K. Mills, “Optical implementation of code division
                  multiplexing for super resolution. Part II. Temporal method,” Opt. Comm. 195:
                  101–106 (2001).
               26. Z. Zalevsky, P. Garc´ıa-Mart´ınez, and J. Garc´ıa, “Superresolution using gray level
                  coding,” Opt. Exp. 14: 5178–5182 (2006).
               27. W. Lukosz, “Optical systems with resolving powers exceeding the classical
                  limits II,” J. Opt. Soc. Am. 57: 932–41 (1967).
               28. Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, “Super resolution optical sys-
                  tems using fixed gratings,” Opt. Comm. 163: 79–85 (1999).
               29. E. Sabo, Z. Zalevsky, D. Mendlovic, N. Konforti, and I. Kiryuschev, “Super
                  resolution optical system using two fixed generalized Dammann gratings,”
                  Appl. Opt. 39: 5318–5325 (2000).
               30. E. Sabo, Z. Zalevsky, D. Mendlovic, N. Konforti, and I. Kiryuschev, “Super
                  resolution optical system using three fixed generalized gratings: Experimental
                  results,” J. Opt. Soc. Am. A 18: 514–520 (2001).
               31. Z. Zalevsky, V. Eckhouse, N. Konforti, A. Shemer, D. Mendlovic, and J. Garcia,
                  “Super resolving optical system based on spectral dilation,” Opt. Comm. 241:
                  43–50 (2004).
               32. M. A. Grim and A. W. Lohmann, “Super resolution image for 1-D objects,” J.
                  Opt. Soc. Am. 56: 1151–1156 (1966).
               33. A. Zlotnik, Z. Zalevsky, and E. Marom, “Optical encryption using synthesized
                  mutual intensity function,” Appl. Opt. 43: 3455–3465 (2004).
               34. Z. Zalevsky, J. Garcia, P. Garcia-Martinez, and C. Ferreira, “Spatial information
                  transmission using orthogonal mutual coherence coding,” Opt. Lett. 20: 2837–
                  2839 (2005).
               35. V. Mico, J. Garc´ıa, C. Ferreira, D. Sylman, and Zeev Zalevsky, “Spatial informa-
                  tion transmission using axial temporal coherence coding,” Opt. Lett. 32: 736–738
                  (2007).
               36. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira,
                  “About the space bandwidth product of optical signal and systems,” J. Opt.
                  Soc. Am. A 13: 470–473 (1996).
               37. D. Mendlovic and A. W. Lohmann, “Space-bandwidth product adaptation and
                  its applications to super resolution: Fundamentals,” J. Opt. Soc. Am. A 14: 558–
                  562 (1997).
               38. D. Mendlovic, A. W. Lohmann, and Z. Zalevsky, “SW—Adaptation and its
                  application for super resolution—Examples,” J. Opt. Soc. Am. 14: 563–567 (1997).
               39. Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, “Understanding super reso-
                  lution in Wigner space,” J. Opt. Soc. Am. A 17: 2422–2430 (2000).
               40. A. Peer, D. Wang, A. W. Lohmann, and A. A. Friesem, “Wigner formulation
                  of optical processing with light of arbitrary coherence,” Appl. Opt. 40: 249–256
                  (2001).
               41. D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, “Graded-index fibers,
                  Wigner distribution functions and the fractional Fourier transform,” Appl. Opt.
                  33: 6188–6193 (1994).
               42. K. B. Wolf, D. Mendlovic, and Z. Zalevsky, “The generalized Wigner function
                  for analysis of super resolution systems,” Appl. Opt. 37: 4374–4379 (1998).
   229   230   231   232   233   234   235   236   237   238   239